132 research outputs found
Capillary and viscous forces during CO2 flooding in tight reservoirs
In this study, the multiphase multicomponent Shan-Chen lattice Boltzmann method is employed to analyze the impact of capillary force on oil-CO2-water fluid flow and enhanced oil recovery. Various sizes of the single throat are designed to simulate the interaction between displacing and displaced phases as well as their mechanical equilibrium. Several sensitivities are taken into account, such as wettability, miscibility, interfacial tension, and pore aperture. Based on the objective reservoir conditions, supercritical CO2 as an injection fluid is adopted to study the influence of different displacement patterns on the mechanical equilibrium in both homogenous and heterogeneous porous media, in which enhanced oil recovery is also quantitatively estimated. The results show that the water-alternating-gas injection pattern reduces the moving speed of the leading edge by increasing the swept area of the residual oil, and inhibits the breakthrough effect of the gas, making it the optimal displacement method in terms of the degree of oil production. Compared with the results of different displacement patterns, the enhanced oil recovery of water-alternatinggas injection is the highest, followed by supercritical CO2 flooding after water flooding, and lastly, continuous supercritical CO2 flooding.Cited as: Zhang, C., Zhang, Q., Wang, W., Xie, Q., Su, Y., Zafar, A. Capillary and viscous forces during CO2 flooding in tight reservoirs. Capillarity, 2022, 5(6): 105-114. https://doi.org/10.46690/capi.2022.06.0
Research Progress and Trends in Metabolomics of Fruit Trees
Metabolomics is an indispensable part of modern systems biotechnology, applied in the diseases’ diagnosis, pharmacological mechanism, and quality monitoring of crops, vegetables, fruits, etc. Metabolomics of fruit trees has developed rapidly in recent years, and many important research results have been achieved in combination with transcriptomics, genomics, proteomics, quantitative trait locus (QTL), and genome-wide association study (GWAS). These research results mainly focus on the mechanism of fruit quality formation, metabolite markers of special quality or physiological period, the mechanism of fruit tree’s response to biotic/abiotic stress and environment, and the genetics mechanism of fruit trait. According to different experimental purposes, different metabolomic strategies could be selected, such as targeted metabolomics, non-targeted metabolomics, pseudo-targeted metabolomics, and widely targeted metabolomics. This article presents metabolomics strategies, key techniques in metabolomics, main applications in fruit trees, and prospects for the future. With the improvement of instruments, analysis platforms, and metabolite databases and decrease in the cost of the experiment, metabolomics will prompt the fruit tree research to achieve more breakthrough results
Aldehyde Dehydrogenase-2 Attenuates Myocardial Remodeling and Contractile Dysfunction Induced by a High-Fat Diet
Background/Aims: Consumption of a high-fat (HF) diet exacerbates metabolic cardiomyopathy through lipotoxic mechanisms. In this study, we explored the role of aldehyde dehydrogenase-2 (ALDH2) in myocardial damage induced by a HF diet. Methods: Wild-type C57 BL/6J mice were fed a HF diet or control diet for 16 weeks. ALDH2 overexpression was achieved by injecting a lentiviral ALDH2 expression vector into the left ventricle. Results: Consumption of a HF diet induced metabolic syndrome and myocardial remodeling, and these deleterious effects were attenuated by ALDH2 overexpression. In addition, ALDH2 overexpression attenuated the cellular apoptosis and insulin resistance associated with a HF diet. Mechanistically, ALDH2 overexpression inhibited the expression of c-Jun N-terminal kinase (JNK)-1, activated protein 1 (AP-1), insulin receptor substrate 1 (IRS-1), 4- hydroxynonenal, caspase 3, transforming growth factor β1, and collagen I and III, and enhanced Akt phosphorylation. Conclusion: ALDH2 may effectively attenuate myocardial remodeling and contractile defects induced by a HF diet through the regulation of the JNK/AP-1 and IRS-1/Akt signaling pathways. Our study demonstrates that ALDH2 plays an essential role in protecting cardiac function from lipotoxic cardiomyopathy
Rigid three-dimensional Ni3S4 nanosheet frames: Controlled synthesis and their enhanced electrochemical performance
Rigid three-dimensional (3D) NiS nanosheet frames assembled from ultrathin nanosheets are synthesized via a facile solvothermal method. Compared to flat NiS sheets, 3D NiS nanosheet frames have both a high free volume and high compressive strength. They can deliver a very high specific capacitance of 1213 F g with good rate performance. In addition, these 3D NiS nanosheet frames are stabilized by plastically deformed ridges. The stabilized nanosheet frames did not unfold or collapse during electrochemical tests, and thus showed enhanced cycling ability
The First Case of Ischemia-Free Kidney Transplantation in Humans
Background: Ischemia-reperfusion injury (IRI) has been considered an inevitable event in organ transplantation since the first successful kidney transplant was performed in 1954. To avoid IRI, we have established a novel procedure called ischemia-free organ transplantation. Here, we describe the first case of ischemia-free kidney transplantation (IFKT). Materials and Methods: The kidney graft was donated by a 19-year-old brain-dead donor. The recipient was a 47-year-old man with end-stage diabetic nephropathy. The graft was procured, preserved, and implanted without cessation of blood supply using normothermic machine perfusion. Results: The graft appearance, perfusion flow, and urine production suggested that the kidney was functioning well-during the whole procedure. The creatinine dropped rapidly to normal range within 3 days post-transplantation. The levels of serum renal injury markers were low post-transplantation. No rejection or vascular or infectious complications occurred. The patient had an uneventful recovery. Conclusion: This paper marks the first case of IFKT in humans. This innovation may offer a unique solution to optimizing transplant outcomes in kidney transplantation
Using Image Feature Extraction to Identification of Ancient Ceramics Based on Partial Differential Equation
This paper presents an in-depth study and analysis of the image feature extraction technique for ancient ceramic identification using an algorithm of partial differential equations. Image features of ancient ceramics are closely related to specific raw material selection and process technology, and complete acquisition of image features of ancient ceramics is a prerequisite for achieving image feature identification of ancient ceramics, since the quality of extracted area-grown ancient ceramic image feature extraction method is closely related to the background pixels and does not have generalizability. In this paper, we propose a deep learning-based extraction method, using Eased as a deep learning support platform, to extract and validate 5834 images of 272 types of ancient ceramics from kilns, celadon, and Yue kilns after manual labelling and training learning, and the results show that the average complete extraction rate is higher than 99%. The implementation of the deep learning method is summarized and compared with the traditional region growth extraction method, and the results show that the method is robust with the increase of the learning amount and has generalizability, which is a new method to effectively achieve the complete image feature extraction of ancient ceramics. The main content of the finite difference method is to use the ratio of the difference between the function values of two adjacent points and the distance between the two points to approximate the partial derivative of the function with respect to the variable. This idea was used to turn the problem of division into a problem of difference. Recognition of ancient ceramic image features was realized based on the extraction of the overall image features of ancient ceramics, the extraction and recognition of vessel type features, the quantitative recognition of multidimensional feature fusion ornamentation image features, and the implementation of deep learning based on inscription model recognition image feature classification recognition method; three-layer B/S architecture web application system and cross-platform system language called as the architectural support; and database services, deep learning packaging, and digital image processing. The specific implementation method is based on database service, deep learning encapsulation, digital image processing, and third-party invocation, and the service layer fusion and relearning mechanism is proposed to achieve the preliminary intelligent recognition system of ancient ceramic vessel type and ornament image features. The results of the validation test meet the expectation and verify the effectiveness of the ancient ceramic vessel type and ornament image feature recognition system
- …