53 research outputs found

    Simulation of Relativistic Electrons Through a Magnetic Chicane

    Get PDF
    Poster describing the path length differences for two relativistic electrons going through a series of four dipoles. This preliminary work will lead to full simulation of electron beam being compressed for use in an X-Ray Free Electron Laser in conjunction with magnetic quadruple lenses to create a small electron beam

    Simulation of Relativistic Electrons Through a Magnetic Chicane

    Get PDF
    Poster describing the path length differences for two relativistic electrons going through a series of four dipoles. This preliminary work will lead to full simulation of electron beam being compressed for use in an X-Ray Free Electron Laser in conjunction with magnetic quadruple lenses to create a small electron beam

    A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes

    Get PDF
    A possible malaria control approach involves the dissemination in mosquitoes of inherited symbiotic microbes to block Plasmodium transmission. However, in the Anopheles gambiae complex, the primary African vectors of malaria, there are limited reports of inherited symbionts that impair transmission. We show that a vertically transmitted microsporidian symbiont (Microsporidia MB) in the An. gambiae complex can impair Plasmodium transmission. Microsporidia MB is present at moderate prevalence in geographically dispersed populations of An. arabiensis in Kenya, localized to the mosquito midgut and ovaries, and is not associated with significant reductions in adult host fecundity or survival. Field-collected Microsporidia MB infected An. arabiensis tested negative for P. falciparum gametocytes and, on experimental infection with P. falciparum, sporozoites aren’t detected in Microsporidia MB infected mosquitoes. As a microbe that impairs Plasmodium transmission that is non-virulent and vertically transmitted, Microsporidia MB could be investigated as a strategy to limit malaria transmission

    The desmosome and pemphigus

    Get PDF
    Desmosomes are patch-like intercellular adhering junctions (β€œmaculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required

    The Influence of the Processing Temperature of Polylactide on Geometric Structure of the Surface Using FDM Technique

    No full text
    The influence of the processing temperature of polylactide (PLA) on the structure geometry changing (SGC) and its functional properties were analyzed. The PLA samples subjected to testing were manufactured using incremental fused deposition modeling technology (FDM) with processing temperatures ranging from 180Β°C to 230Β°C. The topography of the PLA surfaces formed during heat dissipation and generated by the work table was analyzed. The roughness measurements were carried out using the profile method in accordance with PN ISO 3274: 2011. Registered profiles of the surfaces were analyzed numerically in fractal terms using the method of the S(Ξ”x) structure function. The functional properties of the PLA surface were evaluated on the basis of Abbott-Firestone curves, according to PN EN ISO 13565–2: 1999
    • …
    corecore