15,443 research outputs found

    Surface plasma resonance in small rare gas clusters by mixing IR and VUV laser pulses

    Full text link
    The ionization dynamics of a Xenon cluster with 40 atoms is analyzed under a pum p probe scenario of laser pulses where an infrared laser pulse of 50 fs length follows with a well defined time delay a VUV pulse of the same length and peak intensity. The mechanism of resonant energy absorption due to the coinc idence of the IR laser frequency with the frequency of collective motion of quasi free electrons in the cluster is mapped out by varying the time delay between the pulses

    Electron spin relaxation in graphene: the role of the substrate

    Full text link
    Theory of the electron spin relaxation in graphene on the SiO2_2 substrate is developed. Charged impurities and polar optical surface phonons in the substrate induce an effective random Bychkov-Rashba-like spin-orbit coupling field which leads to spin relaxation by the D'yakonov-Perel' mechanism. Analytical estimates and Monte Carlo simulations show that the corresponding spin relaxation times are between micro- to milliseconds, being only weakly temperature dependent. It is also argued that the presence of adatoms on graphene can lead to spin lifetimes shorter than nanoseconds.Comment: 5 pages, 4 figure

    The running coupling from the four-gluon vertex in Landau gauge Yang-Mills theory

    Full text link
    We consider the running coupling from the four-gluon vertex in Landau gauge, SU(NcN_c) Yang-Mills theory as given by a combination of dressing functions of the vertex and the gluon propagator. We determine these functions numerically from a coupled set of Dyson-Schwinger equations. We reproduce asymptotic freedom in the ultraviolet momentum region and find a coupling of order one at mid-momenta. In the infrared we find a nontrivial (i.e. nonzero) fixed point which is three orders of magnitude smaller than the corresponding fixed point in the coupling of the ghost-gluon vertex. This result explains why the Dyson-Schwinger and the functional renormalization group equations for the two point functions can agree in the infrared, although their structure is quite different. Our findings also support Zwanziger's notion of an infrared effective theory driven by the Faddeev-Popov determinant.Comment: 25 pages, 4 figures; v2: minor clarifications added and typos corrected, version accepted by PR

    Thermal Quantum Fields without Cut-offs in 1+1 Space-time Dimensions

    Full text link
    We construct interacting quantum fields in 1+1 dimensional Minkowski space, representing neutral scalar bosons at positive temperature. Our work is based on prior work by Klein and Landau and Hoegh-KrohnComment: 48 page

    Matching factors for Delta S=1 four-quark operators in RI/SMOM schemes

    Full text link
    The non-perturbative renormalization of four-quark operators plays a significant role in lattice studies of flavor physics. For this purpose, we define regularization-independent symmetric momentum-subtraction (RI/SMOM) schemes for Delta S=1 flavor-changing four-quark operators and provide one-loop matching factors to the MS-bar scheme in naive dimensional regularization. The mixing of two-quark operators is discussed in terms of two different classes of schemes. We provide a compact expression for the finite one-loop amplitudes which allows for a straightforward definition of further RI/SMOM schemes.Comment: 22 pages, 5 figure

    Half-Metallic Ferromagnetism in the Heusler Compound Co2_2FeSi revealed by Resistivity, Magnetoresistance, and Anomalous Hall Effect measurements

    Full text link
    We present electrical transport data for single-crystalline Co2_2FeSi which provide clear-cut evidence that this Heusler compound is truly a half-metallic ferromagnet, i.e. it possesses perfect spin-polarization. More specifically, the temperature dependence of ρ\rho is governed by electron scattering off magnons which are thermally excited over a sizeable gap Δ100K\Delta\approx 100 K (9meV\sim 9 meV) separating the electronic majority states at the Fermi level from the unoccupied minority states. As a consequence, electron-magnon scattering is only relevant at TΔT\gtrsim\Delta but freezes out at lower temperatures, i.e., the spin-polarization of the electrons at the Fermi level remains practically perfect for TΔT\lesssim\Delta. The gapped magnon population has a decisive influence on the magnetoresistance and the anomalous Hall effect (AHE): i) The magnetoresistance changes its sign at T100KT\sim 100 K, ii) the anomalous Hall coefficient is strongly temperature dependent at T100KT\gtrsim 100 K and compatible with Berry phase related and/or side-jump electronic deflection, whereas it is practically temperature-independent at lower temperatures

    Supercurrent-phase relationship of a Nb/InAs(2DES)/Nb Josephson junction in overlapping geometry

    Full text link
    Superconductor/normal conductor/superconductor (SNS) Josephson junctions with highly transparent interfaces are predicted to show significant deviations from sinusoidal supercurrent-phase relationships (CPR) at low temperatures. We investigate experimentally the CPR of a ballistic Nb/InAs(2DES)/Nb junction in the temperature range from 1.3 K to 9 K using a modified Rifkin-Deaver method. The CPR is obtained from the inductance of the phase-biased junction. Transport measurements complement the investigation. At low temperatures, substantial deviations of the CPR from conventional tunnel-junction behavior have been observed. A theoretical model yielding good agreement to the data is presented.Comment: RevTex4, 4 pages including 3 figure

    Chirality sensitive effect on surface states in chiral p-wave superconductors

    Full text link
    We study the local density of states at the surface of a chiral p-wave superconductor in the presence of a weak magnetic field. As a result, the formation of low-energy Andreev bound states is either suppressed or enhanced by an applied magnetic field, depending on its orientation with respect to the chirality of the p-wave superconductor. Similarly, an Abrikosov vortex, which is situated not too far from the surface, leads to a zero-energy peak of the density of states, if its chirality is the same as that of the superconductor, and to a gap structure for the opposite case. We explain the underlying principle of this effect and propose a chirality sensitive test on unconventional superconductors.Comment: 4 pages, 2 figure

    Calculating the mass fraction of primordial black holes

    Get PDF
    We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation c in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not - this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k2. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes

    Episodic excursions of low-mass protostars on the Hertzsprung-Russell diagram

    Get PDF
    Following our recent work devoted to the effect of accretion on the pre-main-sequence evolution of low-mass stars, we perform a detailed analysis of episodic excursions of low-mass protostars in the Hertzsprung-Russell (H-R) diagram triggered by strong mass accretion bursts typical of FU Orionis-type objects (FUors). These excursions reveal themselves as sharp increases in the stellar total luminosity and/or effective temperature of the protostar and can last from hundreds to a few thousands of years, depending on the burst strength and characteristics of the protostar. During the excursions, low-mass protostars occupy the same part of the H-R diagram as young intermediate-mass protostars in the quiescent phase of accretion. Moreover, the time spent by low-mass protostars in these regions is on average a factor of several longer than that spent by the intermediate-mass stars in quiescence. During the excursions, low-mass protostars pass close to the position of most known FUors in the H-R diagram, but owing to intrinsic ambiguity the model stellar evolutionary tracks are unreliable in determining the FUor properties. We find that the photospheric luminosity in the outburst state may dominate the accretion luminosity already after a few years after the onset of the outburst, meaning that the mass accretion rates of known FUors inferred from the bolometric luminosity may be systematically overestimated, especially in the fading phase.Comment: 15 pages, 12 figure
    corecore