21,912 research outputs found
Disentanglement of two harmonic oscillators in relativistic motion
We study the dynamics of quantum entanglement between two Unruh-DeWitt
detectors, one stationary (Alice), and another uniformly accelerating (Rob),
with no direct interaction but coupled to a common quantum field in (3+1)D
Minkowski space. We find that for all cases studied the initial entanglement
between the detectors disappears in a finite time ("sudden death"). After the
moment of total disentanglement the correlations between the two detectors
remain nonzero until late times. The relation between the disentanglement time
and Rob's proper acceleration is observer dependent. The larger the
acceleration is, the longer the disentanglement time in Alice's coordinate, but
the shorter in Rob's coordinate.Comment: 16 pages, 8 figures; typos added, minor changes in Secs. I and
Quantum teleportation between moving detectors in a quantum field
We consider the quantum teleportation of continuous variables modeled by
Unruh-DeWitt detectors coupled to a common quantum field initially in the
Minkowski vacuum. An unknown coherent state of an Unruh-DeWitt detector is
teleported from one inertial agent (Alice) to an almost uniformly accelerated
agent (Rob, for relativistic motion), using a detector pair initially entangled
and shared by these two agents. The averaged physical fidelity of quantum
teleportation, which is independent of the observer's frame, always drops below
the best fidelity value from classical teleportation before the detector pair
becomes disentangled with the measure of entanglement evaluated around the
future lightcone of the joint measurement event by Alice. The distortion of the
quantum state of the entangled detector pair from the initial state can
suppress the fidelity significantly even when the detectors are still strongly
entangled around the lightcone. We point out that the dynamics of entanglement
of the detector pair observed in Minkowski frame or in quasi-Rindler frame are
not directly related to the physical fidelity of quantum teleportation in our
setup. These results are useful as a guide to making judicious choices of
states and parameter ranges and estimation of the efficiency of quantum
teleportation in relativistic quantum systems under environmental influences.Comment: 18 pages, 7 figure
Pareto Optimizing and Scalarly Stationary Sequences
AbstractThe paper deals with vector optimization problems where the solution set (the weakly efficient set) may be empty. We generalize the results known in scalar optimization concerning minimizing and stationary sequences. The relations between these two concepts are given
Photo-Crosslinked Alginate Hydrogels Support Enhanced Matrix Accumulation by Nucleus Pulposus Cells in Vivo
Objective Intervertebral disc (IVD) degeneration is a major health concern in the United States. Replacement of the nucleus pulposus (NP) with injectable biomaterials represents a potential treatment strategy for IVD degeneration. The objective of this study was to characterize the extracellular matrix (ECM) assembly and functional properties of NP cell-encapsulated, photo-crosslinked alginate hydrogels in comparison to ionically crosslinked alginate constructs. Methods Methacrylated alginate was synthesized by esterification of hydroxyl groups with methacrylic anhydride. Bovine NP cells were encapsulated in alginate hydrogels by ionic crosslinking using CaCl2 or through photo-crosslinking upon exposure to long-wave UV light in the presence of a photoinitiator. The hydrogels were evaluated in vitro by gross and histological analysis and in vivo using a murine subcutaneous pouch model. In vivo samples were analyzed for gene expression, ECM localization and accumulation, and equilibrium mechanical properties. Results Ionically crosslinked hydrogels exhibited inferior proteoglycan accumulation in vitro and were unable to maintain structural integrity in vivo. In further studies, photo-crosslinked alginate hydrogels were implanted for up to 8 weeks to examine NP tissue formation. Photo-crosslinked hydrogels displayed temporal increases in gene expression and assembly of type II collagen and proteoglycans. Additionally, hydrogels remained intact over the duration of the study and the equilibrium Young\u27s modulus increased from 1.24 ± 0.09 kPa to 4.31 ± 1.39 kPa, indicating the formation of functional matrix with properties comparable to those of the native NP. Conclusions These findings support the use of photo-crosslinked alginate hydrogels as biomaterial scaffolds for NP replacement
Single-Photon Generation from Stored Excitation in an Atomic Ensemble
Single photons are generated from an ensemble of cold Cs atoms via the
protocol of Duan et al. [Nature \textbf{414}, 413 (2001)]. Conditioned upon an
initial detection from field 1 at 852 nm, a photon in field 2 at 894 nm is
produced in a controlled fashion from excitation stored within the atomic
ensemble. The single-quantum character of the field 2 is demonstrated by the
violation of a Cauchy-Schwarz inequality, namely , where describes detection of two events
conditioned upon an initial detection , with
for single photons.Comment: 5 pages, 4 figure
Direct strain and elastic energy evaluation in rolled-up semiconductor tubes by x-ray micro-diffraction
We depict the use of x-ray diffraction as a tool to directly probe the strain
status in rolled-up semiconductor tubes. By employing continuum elasticity
theory and a simple model we are able to simulate quantitatively the strain
relaxation in perfect crystalline III-V semiconductor bi- and multilayers as
well as in rolled-up layers with dislocations. The reduction in the local
elastic energy is evaluated for each case. Limitations of the technique and
theoretical model are discussed in detail.Comment: 32 pages (single column), 9 figures, 39 reference
Dynamic Boundaries in Asymmetric Exclusion Processes
We investigate the dynamics of a one-dimensional asymmetric exclusion process
with Langmuir kinetics and a fluctuating wall. At the left boundary, particles
are injected onto the lattice; from there, the particles hop to the right.
Along the lattice, particles can adsorb or desorb, and the right boundary is
defined by a wall particle. The confining wall particle has intrinsic forward
and backward hopping, a net leftward drift, and cannot desorb. Performing Monte
Carlo simulations and using a moving-frame finite segment approach coupled to
mean field theory, we find the parameter regimes in which the wall acquires a
steady state position. In other regimes, the wall will either drift to the left
and fall off the lattice at the injection site, or drift indefinitely to the
right. Our results are discussed in the context of non-equilibrium phases of
the system, fluctuating boundary layers, and particle densities in the lab
frame versus the frame of the fluctuating wall.Comment: 13 page
Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation
Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation. Section 3 presents an overall precipitation improvement with AIRS assimilation during a 37-day case study period, and Section 4 focuses on a single case study to further investigate the meteorological impact of AIRS profiles on synoptic scale models. Finally, Section 5 provides a summary of the paper
- …