10 research outputs found

    DESIGN, SYNTHESIS, MOLECULAR DOCKING, AND EVALUATION OF CHROMONE BASED TETRAZOLE DERIVATIVES

    Get PDF
    Objectives: The objective of this research work was to design, synthesize, study the molecular docking, and evaluate the antimicrobial activity of some novel substituted 2-(Phenylamino)-3-(1H-tetrazol-5-yl)-4H-chromen-4-one derivatives (12a-h). Methods: In the present work, 3-Formylchromones were transformed into pharmacologically active substituted 2-(Phenylamino)-3-(1H-tetrazol-5- yl)-4H-chromen-4-one derivatives (12a-h) through a multistep reaction. Initially, synthesis of the substituted 4-Oxo-2-(phenylamino)-4H-chromone-3- carbaldehydes (9a-h) was carried out using substituted acetophenones (6a-h) as starting material and by employing an earlier reported method (1,3-dipolar cycloaddition reaction). Then, these synthesized compounds were converted into respective oximes (10a-h).The obtained oximes (10a-h) were further converted into nitriles (11a-h) which were finally subjected to concerted cycloaddition through stepwise addition of neutral or anionic azide species to furnish final substituted 2-(Phenylamino)-3-(1H-tetrazol-5-yl)-4H-chromen-4-one derivatives (12a-h). All the newly synthesized compounds (12a-h) and a reference compound (ciprofloxacin) were docked into the active site of TyrRS (PDB: 1JIK) by means of the BioPredicta module of VLife MDS. The synthesized compounds (12a-h) were also evaluated in vitro for their antibacterial (against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli bacterial stains) and antifungal activities (against Aspergillus niger and Candida albicans fungal strains) using Zone of Inhibition method. Results: The formation of substituted 2-(Phenylamino)-3-(1H-tetrazol-5-yl)-4H-chromen-4-one derivatives (12a-h) was confirmed through their spectral analysis, that is, 1H-NMR, 13C-NMR, and Mass spectroscopy. During docking study, the recorded molecular binding interactions revealed that all the newly synthesized compounds (12a-h) interacted well with binding site of the enzyme. The synthesized compounds were also evaluated in vitro for their antibacterial (against S. aureus, B. subtilis, P. aeruginosa, and E. coli bacterial stains) and antifungal activities (against A. niger and C. albicans fungal strains). All the synthesized compounds exhibited moderate-to-potent antimicrobial activities. Conclusions: All the synthesized compounds exhibited moderate-to-potent antimicrobial activity

    ANTI-ANXIETY EVALUATION OF EXTRACTS OF STIGMA MAYDIS (CORN SILK)

    Get PDF
    Objective: The anxiolytic activity of petroleum ether, chloroform and ethyl acetate extracts of Stigma maydis was investigated by Elevated Plus Maze, Hole Board and Mirror Chamber Test.Methods: The study was conducted using elevated plus maze, whole board and mirror chamber test. Female Laca/Balb c was used to carry out the studies. In each experiment, animals were equally divided into five groups; control, given saline solution and Tween 80, standard given diazepam (2 mg/kg i. p.) and test groups were given 250, 500, 750 and 1000 mg/kg of petroleum ether, chloroform and ethyl acetate extracts of Stigma maydis. The data were subjected to analysis of variance by taking mean and standard error to the mean using Tukey's post-hoc test.Results: In Elevated Plus Maze chloroform extract (750 and 1000 mg/kg) of Stigma maydis revealed increase in time spent in open arm, frequency and preference to open arm as compared to control, which was almost comparable to diazepam. In Hole Board test decrease in number of head dips as compared to control was observed. In Mirror Chamber Test, the decrease in latency, increase in time spent in the mirror chamber and frequency as compared to control was observed. All of the changes were statistically highly significant.Conclusion: From our results it can be concluded that the chloroform extract of Stigma maydis showed anxiolytic activity at the dose of 750 and 1000 mg/kg.Â

    Balanced chromosomal rearrangements offer insights into coding and noncoding genomic features associated with developmental disorders

    Full text link
    Balanced chromosomal rearrangements (BCRs), including inversions, translocations, and insertions, reorganize large sections of the genome and contribute substantial risk for developmental disorders (DDs). However, the rarity and lack of systematic screening for BCRs in the population has precluded unbiased analyses of the genomic features and mechanisms associated with risk for DDs versus normal developmental outcomes. Here, we sequenced and analyzed 1,420 BCR breakpoints across 710 individuals, including 406 DD cases and the first large-scale collection of 304 control BCR carriers. We found that BCRs were not more likely to disrupt genes in DD cases than controls, but were seven-fold more likely to disrupt genes associated with dominant DDs (21.3% of cases vs. 3.4% of controls; P = 1.60×1012^{−12}). Moreover, BCRs that did not disrupt a known DD gene were significantly enriched for breakpoints that altered topologically associated domains (TADs) containing dominant DD genes in cases compared to controls (odds ratio [OR] = 1.43, P = 0.036). We discovered six TADs enriched for noncoding BCRs (false discovery rate < 0.1) that contained known DD genes (MEF2C, FOXG1, SOX9, BCL11A, BCL11B, and SATB2) and represent candidate pathogenic long-range positional effect (LRPE) loci. These six TADs were collectively disrupted in 7.4% of the DD cohort. Phased Hi-C analyses of five cases with noncoding BCR breakpoints localized to one of these putative LRPEs, the 5q14.3 TAD encompassing MEF2C, confirmed extensive disruption to local 3D chromatin structures and reduced frequency of contact between the MEF2C promoter and annotated enhancers. We further identified six genomic features enriched in TADs preferentially disrupted by noncoding BCRs in DD cases versus controls and used these features to build a model to predict TADs at risk for LRPEs across the genome. These results emphasize the potential impact of noncoding structural variants to cause LRPEs in unsolved DD cases, as well as the complex interaction of features associated with predicting three-dimensional chromatin structures intolerant to disruption

    In vitro

    No full text
    corecore