68 research outputs found

    Green Synthesis, Molecular Characterization and Associative Behavior of Some Gemini Surfactants without a Spacer Group

    Get PDF
    A series of new gemini surfactants without a spacer group, disodium 2,3-dialkyl-1,2,3,4-butanetetracarboxylates, were synthesized in a green chemistry context minimizing the use of organic solvents and applying microwaves (MW) when activation energy was required. Once the desired architecture was confirmed by means of the nuclear magnetic resonance technique (1H-NMR, 1H-1H COSY) for all the studied surfactants, the critical micellization concentration was determined by conductance measurements. The diffusion coefficient of micelles formed by the four compounds was characterized using pulsed field gradient (PFG)-NMR. Diffusion coefficients were found to be dependent on the concentration and on the number of carbon atoms in the alkyl chain. The absence of the spacer group, peculiar to this new series of gemini surfactants, may confer relatively low flexibility to the molecules, with potential implications on the interfacial properties, namely on micellization. These gemini surfactants might have interesting applications in the preparation of composite materials, in nanotechnology, in gene transfection and mainly, due to the low CMCs, as new interesting ingredients of cosmetics and toiletries

    Determination of Selected Polyaromatic Hydrocarbons by Gas Chromatography-Mass Spectrometry for the Analysis of Wood to Establish the cause of Sinking of an Old Vessel (Scauri wreck) by Fire

    Get PDF
    The aimof this paper was to establish the cause of sinking of an old wooden vessel by polycyclic aromatic hydrocarbon (PAH) analyses because wood combustion is a source of PAHs. In particular, the molecular PAH patterns generated by each source are like fingerprints and it is possible to determine the processes that generate PAHs by studying their distribution in wood samples. The relative abundance of high molecular weight PAHs, together with the PAH compound ratios and with total index (proposed by us) has demonstrated that samples owe their PAHs in wood archaeological material to a predominant single mode of origin, i.e. combustion processes, therefore we can say that the sinking of the vessel was caused by a fire

    Biogenic selenium nanoparticles: A fine characterization to unveil their thermodynamic stability

    Get PDF
    Among the plethora of available metal(loid) nanomaterials (NMs), those containing selenium are interesting from an applicative perspective, due to their high biocompatibility. Microorganisms capable of coping with toxic Se-oxyanions generate mostly Se nanoparticles (SeNPs), representing an ideal and green alternative over the chemogenic synthesis to obtain thermody-namically stable NMs. However, their structural characterization, in terms of biomolecules and interactions stabilizing the biogenic colloidal solution, is still a black hole that impairs the exploitation of biogenic SeNP full potential. Here, spherical and thermodynamically stable SeNPs were produced by a metal(loid) tolerant Micrococcus sp. Structural characterization obtained by Scanning Electron Microscopy (SEM) revealed that these SeNPs were surrounded by an organic material that contributed the most to their electrosteric stabilization, as indicated by Zeta (ζ) potential measurements. Proteins were strongly adsorbed on the SeNP surface, while lipids, polysaccharides, and nucleic acids more loosely interacted with SeNMs as highlighted by Fourier Transform Infrared Spectroscopy (FTIR) and overall supported by multivariate statistical analysis. Nevertheless, all these contributors were fundamental to maintain SeNPs stable, as, upon washing, the NM-containing extract showed the arising of aggregated SeNPs alongside Se nanorods (SeNRs). Besides, Density Functional Theory (DFT) calculation unveiled how thiol-containing molecules appeared to play a role in SeO32− bioreduction, stress oxidative response, and SeNP stabilization

    The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of polycarbonate

    Get PDF
    Polycarbonate/silica nanocomposites with different silica quantities were prepared by a melt compounding method. The effect of silica amount, in the range 1\u20135 wt.%, on the morphology, mechanical properties and thermal degradation kinetics of polycarbonate (PC) was investigated. Clusters of silica nanoparticles were well dispersed in the polycarbonate whose structure remained amorphous. NMR results showed intermolecular interactions involving the carbonyl groups of different polymeric chains which did not affect the intramolecular rotational motions. The presence of the lowest silica content showed a decrease in the storage and loss moduli below the glass transition temperature, probably due to a plasticization effect. However, an increase in the amount of silica increased the moduli. The presence of silica in PC slightly increased the thermal stability, except for the highest silica content which showed a decrease. The activation energies of thermal degradation for the nanocomposites depended on the amount of silica and on the degree of conversion

    Identification of microplastics using 4-dimethylamino-4′-nitrostilbene solvatochromic fluorescence

    Get PDF
    In this work, we introduce the use of 4-dimethylamino-4′-nitrostilbene (DANS) fluorescent dye for applications in the detection and analysis of microplastics, an impendent source of pollution made of synthetic organic polymers with a size varying from less than 5 mm to nanometer scale. The use of this dye revealed itself as a versatile, fast and sensitive tool for readily discriminate microplastics in water environment. The experimental evidences herein presented demonstrate that DANS efficiently absorbs into a variety of polymers constituting microplastics, and its solvatochromic properties lead to a positive shift of the fluorescence emission spectrum according to the polarity of the polymers. Therefore, under UV illumination, microplastics glow a specific emission spectrum from blue to red that allows for a straightforward polymer identification. In addition, we show that DANS staining gives access to different detection and analysis strategies based on fluorescence microscopy, from simple epifluorescence fragments visualization, to confocal microscopy and phasor approach for plastic components quantification

    Cross-linked natural IntegroPectin films from citrus biowaste with intrinsic antimicrobial activity

    Get PDF
    Pectin recovered via hydrodynamic cavitation (IntegroPectin) from lemon and grapefruit agri-food waste intrinsically containing antimicrobial bioactive substances (flavonoids, phenolic acids, terpenes, and terpenoids) was used to generate innovative and eco-compatible films that efficiently inhibit the growth of Gram-negative pathogens. Extensive characterization of films confirmed the presence of these substances, which differently interact with the polysaccharide polymer (pectin), plasticizer (glycerol), surfactant (Tween 60), and cross-linker (Ca2+), conferring to these films a unique structure. Besides, IntegroPectin-based films constitute versatile systems for the sustained, controlled, and slow-release (up to 72 h) of bioactive substances in an aqueous environment. This feature is crucial for the good in vitro antimicrobial activity exerted by IntegroPectin films against three Gram-negative bacteria (two indicator pathogen strains Pseudomonas aeruginosa ATCC 10145, P. aeruginosa PAO1, and the clinical isolate Klebsiella pneumoniae) that are involved in the global emergence of the antimicrobial resistance. Graphical abstract: [Figure not available: see fulltext.]

    Changes in Physicochemical Properties of Biochar after Addition to Soil

    Get PDF
    It is recognized that biochar undergoes changes when it is applied to soils. However, the mechanisms of biochar alterations are not fully understood yet. To this purpose, the present study is designed to investigate the transformations in the soil of two different biochars obtained from pyrolysis of fir-wood pellets. The production of the biochars differed for the dry and wet quenching procedures used to terminate the pyrolysis. Both biochars were applied to clay soil (26% sand, 6% silt, and 68% clay) placed into lysimeters. After water saturation and 15 days of equilibration, seeds of watercress (Lepidium sativum) were cultivated. After a further 7 weeks, the biochars were manually separated from the systems. A total of four samples were collected. They were analyzed for chemical–physical characteristics by using an innovative technique referred to as fast field cycling nuclear magnetic resonance relaxometry. The results showed that the dry-quenching produced a material that was mainly chemically altered after application to soil compared to the biochar obtained by the wet-quenching. Indeed, the latter was both chemically and physically modified. In particular, results showed that water was better retained in the soil treated with the dry-quenched material. Consequently, we may suggest that crop productivity and environmental remediation may be modulated by applying either the dry-quenched or the wet-quenched biochar

    Tolerance, Adaptation, and Cell Response Elicited by Micromonospora sp. Facing Tellurite Toxicity: A Biological and Physical-Chemical Characterization

    Get PDF
    The intense use of tellurium (Te) in industrial applications, along with the improper disposal of Te-derivatives, is causing their accumulation in the environment, where oxyanion tellurite (TeO32−) is the most soluble, bioavailable, and toxic Te-species. On the other hand, tellurium is a rare metalloid element whose natural supply will end shortly with possible economic and technological effects. Thus, Te-containing waste represents the source from which Te should be recycled and recovered. Among the explored strategies, the microbial TeO32− biotransformation into less toxic Te-species is the most appropriate concerning the circular economy. Actinomycetes are ideal candidates in environmental biotechnology. However, their exploration in TeO32− biotransformation is scarce due to limited knowledge regarding oxyanion microbial processing. Here, this gap was filled by investigating the cell tolerance, adaptation, and response to TeO32− of a Micromonospora strain isolated from a metal(loid)-rich environment. To this aim, an integrated biological, physical-chemical, and statistical approach combining physiological and biochemical assays with confocal or scanning electron (SEM) microscopy and Fourier-transform infrared spectroscopy in attenuated total reflectance mode (ATR-FTIR) was designed. Micromonospora cells exposed to TeO32− under different physiological states revealed a series of striking cell responses, such as cell morphology changes, extracellular polymeric substance production, cell membrane damages and modifications, oxidative stress burst, protein aggregation and phosphorylation, and superoxide dismutase induction. These results highlight this Micromonospora strain as an asset for biotechnological purposes

    Volatile Compounds of Lemon and Grapefruit IntegroPectin

    Get PDF
    An HS-SPME GC-MS analysis of the volatile compounds adsorbed at the outer surface of lemon and grapefruit pectins obtained via the hydrodynamic cavitation of industrial waste streams of lemon and grapefruit peels in water suggests important new findings en route to understanding the powerful and broad biological activity of these new pectic materials. In agreement with the ultralow degree of esterification of these pectins, the high amount of highly bioactive α-terpineol and terpinen-4-ol points to limonene (and linalool) decomposition catalyzed by residual citric acid in the citrus waste peel residue of the juice industrial production
    • …
    corecore