72 research outputs found

    The Crisis of Marxism : an appraisal of new derections

    Get PDF
    原著:エドワードB, チルコット、ロナルドH, チルコット 訳・解説:若森,章

    Debris disk results from the Gemini Planet Imager Exoplanet Survey's polarimetric imaging campaign

    Get PDF
    Funding: Supported by NSF grants AST-1411868 (E.L.N., K.B.F., B.M., and J.P.), AST-141378 (G.D.), and AST-1518332 (T.M.E., R.J.D.R., J.R.G., P.K., G.D.). Supported by NASA grants NNX14AJ80G (E.L.N., B.M., F.M., and M.P.), NNX15AC89G and NNX15AD95G/NExSS (T.M.E., B.M., R.J.D.R., G.D., J.J.W, J.R.G., P.K.), NN15AB52l (D.S.), and NNX16AD44G (K.M.M.). M.R. is supported by the NSF Graduate Research Fellowship Program under grant number DGE-1752134. J.R. and R.D. acknowledge support from the Fonds de Recherche du Quèbec. J. Mazoyer’s work was performed in part under contract with the California Institute of Technology/Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. M.M.B. and J.M. were supported by NASA through Hubble Fellowship grants #51378.01-A and HST-HF2-51414.001, respectively, and I.C. through Hubble Fellowship grant HST-HF2-51405.001-A, awarded by the Space Telescope Science Institute, which is operated by AURA, for NASA, under contract NAS5-26555. K.W.D. is supported by an NRAO Student Observing Support Award SOSPA3-007. J.J.W. is supported by the Heising-Simons Foundation 51 Pegasi b postdoctoral fellowship.We report the results of a ∼4 yr direct imaging survey of 104 stars to resolve and characterize circumstellar debris disks in scattered light as part of the Gemini Planet Imager (GPI) Exoplanet Survey. We targeted nearby (≲150 pc), young (≲500 Myr) stars with high infrared (IR) excesses (LIR/L⋆ > 10-5), including 38 with previously resolved disks. Observations were made using the GPI high-contrast integral field spectrograph in H-band (1.6 μm) coronagraphic polarimetry mode to measure both polarized and total intensities. We resolved 26 debris disks and 3 protoplanetary/transitional disks. Seven debris disks were resolved in scattered light for the first time, including newly presented HD 117214 and HD 156623, and we quantified basic morphologies of five of them using radiative transfer models. All of our detected debris disks except HD 156623 have dust-poor inner holes, and their scattered-light radii are generally larger than corresponding radii measured from resolved thermal emission and those inferred from spectral energy distributions. To assess sensitivity, we report contrasts and consider causes of nondetections. Detections were strongly correlated with high IR excess and high inclination, although polarimetry outperformed total intensity angular differential imaging for detecting low-inclination disks (≲70°). Based on postsurvey statistics, we improved upon our presurvey target prioritization metric predicting polarimetric disk detectability. We also examined scattered-light disks in the contexts of gas, far-IR, and millimeter detections. Comparing H-band and ALMA fluxes for two disks revealed tentative evidence for differing grain properties. Finally, we found no preference for debris disks to be detected in scattered light if wide-separation substellar companions were present.Publisher PDFPeer reviewe

    The Gemini planet imager view of the HD 32297 debris disk

    Get PDF
    Funding: M.M.B. and J.M. were supported by NASA through Hubble Fellowship grants #51378.01-A and HST-HF2-51414.001, respectively, and I.C. through Hubble Fellowship grant HST-HF2-51405.001-A, awarded by the Space Telescope Science Institute, which is operated by AURA, for NASA, under contract NAS5-26555.We present new H-band scattered light images of the HD 32297 edge-on debris disk obtained with the Gemini Planet Imager. The disk is detected in total and polarized intensity down to a projected angular separation of 0"15, or 20 au. On the other hand, the large-scale swept-back halo remains undetected, likely a consequence of its markedly blue color relative to the parent body belt. We analyze the curvature of the disk spine and estimate a radius of ≍100 au for the parent body belt, smaller than past scattered light studies but consistent with thermal emission maps of the system. We employ three different flux-preserving post-processing methods to suppress the residual starlight and evaluate the surface brightness and polarization profile along the disk spine. Unlike past studies of the system, our high-fidelity images reveal the disk to be highly symmetric and devoid of morphological and surface brightness perturbations. We find the dust scattering properties of the system to be consistent with those observed in other debris disks, with the exception of HR 4796. Finally, we find no direct evidence for the presence of a planetary-mass object in the system.Publisher PDFPeer reviewe

    Teori Perbandingan Politik

    No full text

    Teori Perbandingan Politik : Penelusuran Paradigma

    No full text
    xxii.624 hal.;23 c

    Teori Perbandingan Politik : Penelusuran Paradigma

    No full text
    corecore