760 research outputs found

    Pressure formulas for liquid metals and plasmas based on the density-functional theory

    Full text link
    At first, pressure formulas for the electrons under the external potential produced by fixed nuclei are derived both in the surface integral and volume integral forms concerning an arbitrary volume chosen in the system; the surface integral form is described by a pressure tensor consisting of a sum of the kinetic and exchange-correlation parts in the density-functional theory, and the volume integral form represents the virial theorem with subtraction of the nuclear virial. Secondly on the basis of these formulas, the thermodynamical pressure of liquid metals and plasmas is represented in the forms of the surface integral and the volume integral including the nuclear contribution. From these results, we obtain a virial pressure formula for liquid metals, which is more accurate and simpler than the standard representation. From the view point of our formulation, some comments are made on pressure formulas derived previously and on a definition of pressure widely used.Comment: 18 pages, no figur

    Polynomial solutions of nonlinear integral equations

    Full text link
    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of C. Bender and E. Ben-Naim. We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.Comment: 10 page

    Wigner quantization of some one-dimensional Hamiltonians

    Full text link
    Recently, several papers have been dedicated to the Wigner quantization of different Hamiltonians. In these examples, many interesting mathematical and physical properties have been shown. Among those we have the ubiquitous relation with Lie superalgebras and their representations. In this paper, we study two one-dimensional Hamiltonians for which the Wigner quantization is related with the orthosymplectic Lie superalgebra osp(1|2). One of them, the Hamiltonian H = xp, is popular due to its connection with the Riemann zeros, discovered by Berry and Keating on the one hand and Connes on the other. The Hamiltonian of the free particle, H_f = p^2/2, is the second Hamiltonian we will examine. Wigner quantization introduces an extra representation parameter for both of these Hamiltonians. Canonical quantization is recovered by restricting to a specific representation of the Lie superalgebra osp(1|2)

    Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation

    Full text link
    We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial distribution functions, and also calculate the free-atom and metallic-atom form-factors, focusing on how bonding effects affect the interpretation of X-ray scattering experiments, especially experimental measurements of the ion-ion structure factor in the liquid metallic phase.Comment: RevTeX, 19 pages, 7 figure

    Cosine and Sine Operators Related with Orthogonal Polynomial Sets on the Intervall [-1,1]

    Full text link
    The quantization of phase is still an open problem. In the approach of Susskind and Glogower so called cosine and sine operators play a fundamental role. Their eigenstates in the Fock representation are related with the Chebyshev polynomials of the second kind. Here we introduce more general cosine and sine operators whose eigenfunctions in the Fock basis are related in a similar way with arbitrary orthogonal polynomial sets on the intervall [-1,1]. To each polynomial set defined in terms of a weight function there corresponds a pair of cosine and sine operators. Depending on the symmetry of the weight function we distinguish generalized or extended operators. Their eigenstates are used to define cosine and sine representations and probability distributions. We consider also the inverse arccosine and arcsine operators and use their eigenstates to define cosine-phase and sine-phase distributions, respectively. Specific, numerical and graphical results are given for the classical orthogonal polynomials and for particular Fock and coherent states.Comment: 1 tex-file (24 pages), 11 figure

    The rotating Morse potential model for diatomic molecules in the tridiagonal J-matrix representation: I. Bound states

    Full text link
    This is the first in a series of articles in which we study the rotating Morse potential model for diatomic molecules in the tridiagonal J-matrix representation. Here, we compute the bound states energy spectrum by diagonalizing the finite dimensional Hamiltonian matrix of H2, LiH, HCl and CO molecules for arbitrary angular momentum. The calculation was performed using the J-matrix basis that supports a tridiagonal matrix representation for the reference Hamiltonian. Our results for these diatomic molecules have been compared with available numerical data satisfactorily. The proposed method is handy, very efficient, and it enhances accuracy by combining analytic power with a convergent and stable numerical technique.Comment: 18 Pages, 6 Tables, 4 Figure

    A Novel Multi-parameter Family of Quantum Systems with Partially Broken N-fold Supersymmetry

    Get PDF
    We develop a systematic algorithm for constructing an N-fold supersymmetric system from a given vector space invariant under one of the supercharges. Applying this algorithm to spaces of monomials, we construct a new multi-parameter family of N-fold supersymmetric models, which shall be referred to as "type C". We investigate various aspects of these type C models in detail. It turns out that in certain cases these systems exhibit a novel phenomenon, namely, partial breaking of N-fold supersymmetry.Comment: RevTeX 4, 28 pages, no figure

    Block orthogonal polynomials: I. Definition and properties

    Full text link
    Constrained orthogonal polynomials have been recently introduced in the study of the Hohenberg-Kohn functional to provide basis functions satisfying particle number conservation for an expansion of the particle density. More generally, we define block orthogonal (BO) polynomials which are orthogonal, with respect to a first Euclidean scalar product, to a given ii-dimensional subspace Ei{\cal E}_i of polynomials associated with the constraints. In addition, they are mutually orthogonal with respect to a second Euclidean scalar product. We recast the determination of these polynomials into a general problem of finding particular orthogonal bases in an Euclidean vector space endowed with distinct scalar products. An explicit two step Gram-Schmidt orthogonalization (G-SO) procedure to determine these bases is given. By definition, the standard block orthogonal (SBO) polynomials are associated with a choice of Ei{\cal E}_i equal to the subspace of polynomials of degree less than ii. We investigate their properties, emphasizing similarities to and differences from the standard orthogonal polynomials. Applications to classical orthogonal polynomials will be given in forthcoming papers.Comment: This is a reduced version of the initial manuscript, the number of pages being reduced from 34 to 2
    • …
    corecore