7,560 research outputs found

    Conflation of short identity-by-descent segments bias their inferred length distribution

    Full text link
    Identity-by-descent (IBD) is a fundamental concept in genetics with many applications. In a common definition, two haplotypes are said to contain an IBD segment if they share a segment that is inherited from a recent shared common ancestor without intervening recombination. Long IBD segments (> 1cM) can be efficiently detected by a number of algorithms using high-density SNP array data from a population sample. However, these approaches detect IBD based on contiguous segments of identity-by-state, and such segments may exist due to the conflation of smaller, nearby IBD segments. We quantified this effect using coalescent simulations, finding that nearly 40% of inferred segments 1-2cM long are results of conflations of two or more shorter segments, under demographic scenarios typical for modern humans. This biases the inferred IBD segment length distribution, and so can affect downstream inferences. We observed this conflation effect universally across different IBD detection programs and human demographic histories, and found inference of segments longer than 2cM to be much more reliable (less than 5% conflation rate). As an example of how this can negatively affect downstream analyses, we present and analyze a novel estimator of the de novo mutation rate using IBD segments, and demonstrate that the biased length distribution of the IBD segments due to conflation can lead to inflated estimates if the conflation is not modeled. Understanding the conflation effect in detail will make its correction in future methods more tractable

    Zero differential resistance in two-dimensional electron systems at large filling factors

    Full text link
    We report on a state characterized by a zero differential resistance observed in very high Landau levels of a high-mobility two-dimensional electron system. Emerging from a minimum of Hall field-induced resistance oscillations at low temperatures, this state exists over a continuous range of magnetic fields extending well below the onset of the Shubnikov-de Haas effect. The minimum current required to support this state is largely independent on the magnetic field, while the maximum current increases with the magnetic field tracing the onset of inter-Landau level scattering

    Our Parents, Ourselves: Health Care for an Aging Population; A Report of the Dartmouth Atlas Project

    Get PDF
    The new Dartmouth Atlas, funded by The John A. Hartford Foundation, is a report card that analyzes Medicare data to show us where the United States is making progress in patient-centered, evidence-based care for Medicare beneficiaries and where improvement is still needed. It also offers insight into regional variations in care.Filling in the gaps in our knowledge about the state of care across the country will help health care providers, health systems, and patients and families work together to improve care for all older adults.This Dartmouth Atlas report looks at a number of measures from Medicare data, including:The number of days older adults spend in contact with the health care system;Use of high-risk medications;Cancer screening rates (and how they compare with recommendations);30-day hospital readmission rates;Annual Wellness Visit (AWV) rates;Late hospice referral; andThe number of days spent in intensive care.The report also offers a historical look at key practices, comparing data from 2003-05 and 2012

    Fluctuations of Entropy Production in Partially Masked Electric Circuits: Theoretical Analysis

    Full text link
    In this work we perform theoretical analysis about a coupled RC circuit with constant driven currents. Starting from stochastic differential equations, where voltages are subject to thermal noises, we derive time-correlation functions, steady-state distributions and transition probabilities of the system. The validity of the fluctuation theorem (FT) is examined for scenarios with complete and incomplete descriptions.Comment: 4 pages, 1 figur

    Unique gap structure and symmetry of the charge density wave in single-layer VSe2_2

    Full text link
    Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in these single layers are generally a planar projection of the corresponding bulk CDWs because of the quasi-two-dimensional nature of TMDCs; a different CDW symmetry is unexpected. We report herein the successful creation of pristine single-layer VSe2_2, which shows a (7×3\sqrt7 \times \sqrt3) CDW in contrast to the (4 ×\times 4) CDW for the layers in bulk VSe2_2. Angle-resolved photoemission spectroscopy (ARPES) from the single layer shows a sizable (7×3\sqrt7 \times \sqrt3) CDW gap of ∼\sim100 meV at the zone boundary, a 220 K CDW transition temperature twice the bulk value, and no ferromagnetic exchange splitting as predicted by theory. This robust CDW with an exotic broken symmetry as the ground state is explained via a first-principles analysis. The results illustrate a unique CDW phenomenon in the two-dimensional limit
    • …
    corecore