390 research outputs found

    Toward a Unified Magnetic Phase Diagram of the Cuprate Superconductors

    Full text link
    We propose a unified magnetic phase diagram of cuprate superconductors. A new feature of this phase diagram is a broad intermediate doping region of quantum-critical, z=1z=1, behavior, characterized by temperature independent T1T/T2GT_1T/T_{\rm 2G} and linear T1TT_1T, where the spin waves are not completely absorbed by the electron-hole continuum. The spin gap in the moderately doped materials is related to the suppression of the low-energy spectral weight in the quantum disordered, z=1z=1, regime. The crossover to the z=2z=2 regime, where T_1T/T_{\rm 2G}^2 \simeq \mbox{const}, occurs only in the fully doped materials.Comment: 14 pages, REVTeX v2.1, PostScript file for 3 figures attached, UIUC-P-93-06-04

    Stability of homogeneous magnetic phases in a generalized t-J model

    Full text link
    We study the stability of homogeneous magnetic phases in a generalized t-J model including a same-sublattice hopping t' and nearest-neighbor repulsion V by means of the slave fermion-Schwinger boson representation of spin operators. At mean-field order we find, in agreement with other authors, that the inclusion of further-neighbor hopping and Coulomb repulsion makes the compressibility positive, thereby stabilizing at this level the spiral and Neel orders against phase separation. However, the consideration of Gaussian fluctuation of order parameters around these mean-field solutions produces unstable modes in the dynamical matrix for all relevant parameter values, leaving only reduced stability regions for the Neel phase. We have computed the one-loop corrections to the energy in these regions, and have also briefly considered the effects of the correlated hopping term that is obtained in the reduction from the Hubbard to the t-J model.Comment: 5 pages, 5 figures, Revte

    Spin dynamics in stripe-ordered La5/3Sr1/3NiO4

    Full text link
    Polarized and unpolarized neutron inelastic scattering has been used to measure the spin excitations in the spin-charge-ordered stripe phase of La5/3Sr1/3NiO4. At high energies, sharp magnetic modes are observed characteristic of a static stripe lattice. The energy spectrum is described well by a linear spin wave model with intra- and inter-stripe exchange interactions between neighbouring Ni spins given by J = 15 +/- 1.5 meV and J' = 7.5 +/- 1.5 meV respectively. A pronounced broadening of the magnetic fluctuations in a band between 10 meV and 25 meV is suggestive of coupling to collective motions of the stripe domain walls.Comment: ReVTeX 4, 4 pages inc. 4 Fig

    Direct Observation of a One Dimensional Static Spin Modulation in Insulating La1.95Sr0.05CuO4

    Full text link
    We report the results of an extensive elastic neutron scattering study of the incommensurate (IC) static spin correlations in La1.95Sr0.05CuO4 which is an insulating spin glass at low temperatures. The present neutron scattering experiments on the same x=0.05 crystal employ a narrower instrumental Q-resolution and thereby have revealed that the crystal has only two orthorhombic twins at low temperatures with relative populations of 2:1. We find that, in a single twin, only two satellites are observed at (1, +/-0.064, L)(ortho) and (0, 1+/-0.064, L)(ortho), that is, the modulation vector is only along the orthorhombic b*-axis. This demonstrates unambiguously that La1.95Sr0.05CuO4 has a one-dimensional static diagonal spin modulation at low temperatures, consistent with certain stripe models. We have also reexamined the x=0.04 crystal that previously was reported to show a single commensurate peak. By mounting the sample in the (H, K, 0) zone, we have discovered that the x=0.04 sample in fact has the same IC structure as the x=0.05x=0.05 sample. The incommensurability parameter d for x=0.04 and 0.05, where d is the distance from (1/2, 1/2) in tetragonal reciprocal lattice units, follows the linear relation d=x. These results demonstrate that the insulator to superconductor transition in the under doped regime (0.05 </= x </= 0.06) in La2-xSrxCuO4 is coincident with a transition from diagonal to collinear static stripes at low temperatures thereby evincing the intimate coupling between the one dimensional spin density modulation and the superconductivity.Comment: 9 pages 8 figure

    Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase

    Full text link
    We investigate the upper critical field in a stripe--phase and in the presence of a phenomenological pseudogap. Our results indicate that the formation of stripes affects the Landau orbits and results in an enhancement of Hc2H_{c2}. On the other hand, phenomenologically introduced pseudogap leads to a reduction of the upper critical field. This effect is of particular importance when the magnitude of the gap is of the order of the superconducting transition temperature. We have found that a suppression of the upper critical field takes place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure

    Glassy nature of stripe ordering in La(1.6-x)Nd(0.4)Sr(x)CuO(4)

    Full text link
    We present the results of neutron-scattering studies on various aspects of crystalline and magnetic structure in single crystals of La(1.6-x)Nd(0.4)Sr(x)CuO(4) with x=0.12 and 0.15. In particular, we have reexamined the degree of stripe order in an x=0.12 sample. Measurements of the width for an elastic magnetic peak show that it saturates at a finite value below 30 K, corresponding to a spin-spin correlation length of 200 A. A model calculation indicates that the differing widths of magnetic and (previously reported) charge-order peaks, together with the lack of commensurability, can be consistently explained by disorder in the stripe spacing. Above 30 K, the width of the nominally elastic signal begins to increase. Interpreting the signal as critical scattering from slowly fluctuating spins, the temperature dependence of the width is consistent with renormalized classical behavior of a 2-dimensional anisotropic Heisenberg antiferromagnet. Inelastic scattering measurements show that incommensurate spin excitations survive at and above 50 K, where the elastic signal is neglible. We also report several results related to the LTO-to-LTT transition.Comment: 13 pp, 2-col. REVTeX, 11 figures embedded with psfig; expanded discussion of T-dep. of magnetic peak width; version to appear in Phys. Rev. B (01Jun99

    Stability of metallic stripes in the extended one-band Hubbard model

    Full text link
    Based on an unrestricted Gutzwiller approximation (GA) we investigate the stripe orientation and periodicity in an extended one-band Hubbard model. A negative ratio between next-nearest and nearest neighbor hopping t'/t, as appropriate for cuprates, favors partially filled (metallic) stripes for both vertical and diagonal configurations. At around optimal doping diagonal stripes, site centered (SC) and bond centered (BC) vertical stripes become degenerate suggesting strong lateral and orientational fluctuations. We find that within the GA the resulting phase diagram is in agreement with experiment whereas it is not in the Hartree-Fock approximation due to a strong overestimation of the stripe filling. Results are in agreement with previous calculations within the three-band Hubbard model but with the role of SC and BC stripes interchanged.Comment: 10 pages, 8 figure

    Berry phases and pairing symmetry in Holstein-Hubbard polaron systems

    Full text link
    We study the tunneling dynamics of dopant-induced hole polarons which are self-localized by electron-phonon coupling in a two-dimensional antiferro- magnet. Our treatment is based on a path integral formulation of the adia- batic approximation, combined with many-body tight-binding, instanton, con- strained lattice dynamics, and many-body exact diagonalization techniques. Our results are mainly based on the Holstein-tJtJ and, for comparison, on the Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics is mapped onto an effective low-energy Hamiltonian which takes the form of a fermion tight-binding model with occupancy dependent, predominant- ly 2nd and 3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an effective intersite charge interactions. Antiferromagnetic spin correlations in the original many-electron Hamiltonian are reflected by an attractive contribution to the 1st neighbor charge interaction and by Berry phase factors which determine the signs of effective polaron tunneling ma- trix elements. In the two-polaron case, these phase factors lead to polaron pair wave functions of either dx2−y2d_{x^2-y^2}-wave symmetry or p-wave symme- try with zero and nonzero total pair momentum, respectively. Implications for the doping dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure
    • 

    corecore