21 research outputs found

    A Novel Mice Model for Studying the Efficacy and IRAEs of Anti-CTLA4 Targeted Immunotherapy

    Get PDF
    BackgroundPatient-derived orthotopic xenograft (PDOX) is a popular animal model for translational cancer research. Immunotherapy is a promising therapy against glioblastoma (GBM). However, the PDOX model is limited to evaluating immune-related events. Our study aims to establish GBM humanized PDOX (HPDOX) mice models to study the mechanism of anti-CTLA4 immunotherapy and immune-related adverse events (IRAEs).MethodsHPDOX models were established by culturing GBM tissues and intracranially implanting them in NSG mice. Meanwhile, peripheral blood mononuclear cells (PBMCs) were separated from peripheral blood and of GBM patients and administrated in corresponding mice. The population of CD45+, CD3+, CD4+, CD8+, and regulatory T (Treg) cells was estimated in the peripheral blood or tumor.ResultsT cells derived from GBM patients were detected in HPDOX mice models. The application of anti-CTLA4 antibodies (ipilimumab and tremelimumab) significantly inhibited the growth of GBM xenografts in mice. Moreover, residual patient T cells were detected in the tumor microenvironment and peripheral blood of HPDOX mice and were significantly elevated by ipilimumab and tremelimumab. Additionally, Treg cells were decreased in mice with IRAEs. Lastly, the proportion of CD4+/CD8+ T cells dramatically increased after the administration of ipilimumab. And the degree of IRAEs may be related to CD56+ expression in HPDOX.ConclusionsOur study established HPDOX mice models for investigating the mechanism and IRAEs of immunotherapies in GBM, which would offer a promising platform for evaluating the efficacy and IRAEs of novel therapies and exploring personalized therapeutic strategies

    The Relationship between Winter Temperature Rise and Soil Fertility properties

    No full text
    The effects of winter temperature rises on soil microbial activity, nutrient and salinity in Ningxia Plain were studied in a field experiment using an infrared radiator to raise temperatures. Winter temperature rises led to increases in soil organic matter, available phosphorus, soil pH and total salt content, but decreased the available nitrogen in soil and the activities of soil catalase, urease and phosphatase. With a winter temperature of 0.5 °C-2.0 °C, the activities of soil catalase, urease and phosphatase were respectively decreased by 0.08-1.20 mL g -1 , 0.004-0.019 mg g -1 , and 0.10-0.25 mg kg -1 ; soil organic matter was increased by 0.01-0.62 g kg -1 , available nitrogen decreased by 2.45-4.66 g kg -1 , available phosphorus increased by 2.92-5.74 g kg -1 ; soil pH increased by 0.42-0.67, and total salt increased by 0.39-0.50 g kg -1 . Winter temperature rises decreased soil microbial activity, accelerated the decomposition of soil nutrients, and intensified soil salinization

    Downregulation of CyclophilinA/CD147 Axis Induces Cell Apoptosis and Inhibits Glioma Aggressiveness

    No full text
    Gliomas are the most common primary tumors in the brain with poor prognosis. Previous studies have detected high expression of Cyclophilin A (CyPA) and CD147, respectively, in glioma. However, the correlation between their expressions and glioma prognosis remains unclear. Here, we investigated the expression of CyPA and CD147 in different types of glioma and characterized their relationships with clinical features, prognosis, and cell proliferation. Results showed that CyPA and CD147 expressions were elevated in higher grade gliomas. Moreover, the knockdown of CyPA and CD147 by RNA interference significantly induced cell express apoptosis biomarkers such as Annexin V and inhibited proliferation biomarkers like EdU in glioma cells. In summary, our findings revealed that high expression of CyPA and CD147 correlated with glioma grades. Moreover, downregulation of the Cyclophilin A/CD147 axis induces cell apoptosis and inhibits glioma aggressiveness. Those indicating CyPA and CD147 could be used as both potential predictive biomarkers and a potential therapeutic target

    Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice

    No full text
    National "973" Pre-research Program of China [2012CB126312]; National Program of Transgenic Variety Development of China [2011ZX08001-001]Overexpression of a new stress-repressive gene OsDSR2 in rice resulted in enhanced sensitivity to ABA-dependent salt and simulated drought stresses by downregulating the expression of multiple stress-responsive genes. Domain of Unknown Function 966 (DUF966) gene family was found in the protein family database, which consisted of seven genes in rice. The proteins encoded by these genes contained one or two highly conserved DUF966 domains. The available data of public microarray databases implied that these genes might play crucial roles in plant response to abiotic stresses. In this study, a member of the DUF966 gene family, DUF966-stress repressive gene 2 in Oryza sativa (OsDSR2, Loc_Os01g62200), was cloned and its role in rice responding to salt and simulated drought stresses was functionally characterized. OsDSR2 was expressed mainly in nodes of stems and leaf blades from rice. Expression profile analysis of adversity showed that OsDSR2 had different transcriptional responses to salt, drought, cold, heat and oxidative (H2O2) stresses, as well as abscisic acid (ABA), methyl jasmonate, salicylic acid, gibberellin acid and auxin treatments. Transient expression demonstrated that OsDSR2 was localized in the membrane and nucleus. Overexpression of OsDSR2 could increase salt and simulated drought (polyethyleneglycol)-stress sensitivities in rice by downregulating the expression of ABA- and stress-responsive genes including OsNCED4, SNAC1, OsbZIP23, P5CS, Oslea3 and rab16C. Furthermore, OsDSR2-overexpressing plants showed reduced ABA sensitivity during the post-germination stage. These results suggested that OsDSR2 negatively regulated rice response to salt and simulated drought stresses as well as ABA signaling, which provided some useful data for understanding the functional roles of DUF966 family genes in abiotic stress responses in plants

    Suppression of expression of the putative receptor-like kinase gene NRRB enhances resistance to bacterial leaf streak in rice

    No full text
    National Program of Transgenic Variety Development of China [2011ZX08001-001]; National Key Basic Researches Program of China [2012CB126312]Bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an important disease of rice, which is responsible for the economic losses worldwide. Functional investigation of differentially expressed protein genes (DEPGs) from rice (Oryza sativa L.) upon Xoc infection provides insight into the molecular mechanism of rice-Xoc interactions. Here, we show that one of DEPGs designated NRRB plays a role in rice-Xoc interactions. NRRB, a receptor-like cytoplasmic kinase gene was preferentially expressed in leaf blades and leaf sheaths where the pathogen colonized. Its transcription was depressed by two defense-signal compounds salicylic acid and 1-aminocyclopropane-1-carboxylic-acid, but was activated by wounding and abscisic acid. Additionally, a plenty of cis-elements associated with stress responses were discovered in the promoter region of NRRB. These data suggest that NRRB is involved in stress responses. More importantly, the NRRB-suppressing rice plants exhibited enhanced resistance against BLS, with the markedly shorter average lesion length than that of the wild type. Furthermore, transcription of some salicylic acid synthesis-related and pathogenesis-related genes including PAD4, PR1a and WRKY13 in transgenic plants was activated, implying that enhanced resistance to BLS might be mediated by the activation of the SA signaling pathway. In conclusion, NRRB gene is involved in various stress responses and regulating resistance to BLS, therefore it might be one of useful genes for rice improvement in future
    corecore