3,612 research outputs found

    Influenza a H5N1 detection

    Get PDF
    We developed a sensitive and rapid real-time reverse transcription- polymerase chain reaction (RT-PCR) assay to detect influenza A H5N1 virus in clinical samples. This assay was evaluated with samples from H5N1-infected patients and demonstrated greater sensitivity and faster turnaround time than nested RT-PCR.published_or_final_versio

    Numb regulates cell–cell adhesion and polarity in response to tyrosine kinase signalling

    Get PDF
    Epithelial-mesenchymal transition (EMT), which can be caused by aberrant tyrosine kinase signalling, marks epithelial tumour progression and metastasis, yet the underlying molecular mechanism is not fully understood. Here, we report that Numb interacts with E-cadherin (E-cad) through its phosphotyrosine-binding domain (PTB) and thereby regulates the localization of E-cad to the lateral domain of epithelial cell–cell junction. Moreover, Numb engages the polarity complex Par3–aPKC–Par6 by binding to Par3 in polarized Madin-Darby canine kidney cells. Intriguingly, after Src activation or hepatocyte growth factor (HGF) treatment, Numb decouples from E-cad and Par3 and associates preferably with aPKC–Par6. Binding of Numb to aPKC is necessary for sequestering the latter in the cytosol during HGF-induced EMT. Knockdown of Numb by small hairpin RNA caused a basolateral-to-apicolateral translocation of E-cad and β-catenin accompanied by elevated actin polymerization, accumulation of Par3 and aPKC in the nucleus, an enhanced sensitivity to HGF-induced cell scattering, a decrease in cell–cell adhesion, and an increase in cell migration. Our work identifies Numb as an important regulator of epithelial polarity and cell–cell adhesion and a sensor of HGF signalling or Src activity during EMT

    High prevalence of Escherichia coli sequence type 131 among antimicrobial-resistant E. coli isolates from geriatric patients

    Get PDF
    Previous work on the subclones within Escherichia coli ST131 predominantly involved isolates from Western countries. This study assessed the prevalence and antimicrobial resistance attributed to this clonal group. A total of 340 consecutive, non-duplicated urinary E. coli isolates originating from four clinical laboratories in Hong Kong in 2013 were tested. ST131 prevalence among the total isolates was 18.5 % (63/340) and was higher among inpatient isolates (23.0 %) than outpatient isolates (11.8 %, P<0.001), and higher among isolates from patients aged ≥65 years than from patients aged 18–50 years and 51–64 years (25.4 vs 3.4 and 4.0 %, respectively, P<0.001). Of the 63 ST131 isolates, 43 (68.3 %) isolates belonged to the H30 subclone, whereas the remaining isolates belonged to H41 (n = 17), H54 (n = 2) and H22 (n = 1). All H30 isolates were ciprofloxacin-resistant, of which 18.6 % (8/43) belonged to the H30-Rx subclone. Twenty-six (41.3 %) ST131 isolates were ESBL-producers, of which 19 had bla CTX-M-14 (12 non-H30-Rx, two H30-Rx and five H41), six had bla CTX-M-15 (five non-H30-Rx and one H30-Rx) and one was bla CTX-M-negative (H30). In conclusion, ST131 accounts for a large share of the antimicrobial-resistant E. coli isolates from geriatric patients. Unlike previous reports, ESBL-producing ST131 strains mainly belonged to non-H30-Rx rather than the H30-Rx subclone, with bla CTX-M-14 as the dominant enzyme type.postprin

    Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity

    Get PDF
    Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))

    ChIP-PaM: an algorithm to identify protein-DNA interaction using ChIP-Seq data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ChIP-Seq is a powerful tool for identifying the interaction between genomic regulators and their bound DNAs, especially for locating transcription factor binding sites. However, high cost and high rate of false discovery of transcription factor binding sites identified from ChIP-Seq data significantly limit its application.</p> <p>Results</p> <p>Here we report a new algorithm, ChIP-PaM, for identifying transcription factor target regions in ChIP-Seq datasets. This algorithm makes full use of a protein-DNA binding pattern by capitalizing on three lines of evidence: 1) the tag count modelling at the peak position, 2) pattern matching of a specific tag count distribution, and 3) motif searching along the genome. A novel data-based two-step eFDR procedure is proposed to integrate the three lines of evidence to determine significantly enriched regions. Our algorithm requires no technical controls and efficiently discriminates falsely enriched regions from regions enriched by true transcription factor (TF) binding on the basis of ChIP-Seq data only. An analysis of real genomic data is presented to demonstrate our method.</p> <p>Conclusions</p> <p>In a comparison with other existing methods, we found that our algorithm provides more accurate binding site discovery while maintaining comparable statistical power.</p

    Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer

    Get PDF
    Cancer cells are known to execute reprogramed metabolism of glucose, amino acids and lipids. Here, we report a significant role of cholesterol metabolism in cancer metastasis. By using label-free Raman spectromicroscopy, we found an aberrant accumulation of cholesteryl ester in human pancreatic cancer specimens and cell lines, mediated by acyl-CoA cholesterol acyltransferase-1 (ACAT-1) enzyme. Expression of ACAT-1 showed a correlation with poor patient survival. Abrogation of cholesterol esterification, either by an ACAT-1 inhibitor or by shRNA knockdown, significantly suppressed tumor growth and metastasis in an orthotopic mouse model of pancreatic cancer. Mechanically, ACAT-1 inhibition increased intracellular free cholesterol level, which was associated with elevated endoplasmic reticulum stress and caused apoptosis. Collectively, our results demonstrate a new strategy for treating metastatic pancreatic cancer by inhibiting cholesterol esterification

    Size Effect on Failure of Pre-stretched Free-Standing Nanomembranes

    Get PDF
    Free-standing nanomembranes are two-dimensional materials with nanometer thickness but can have macroscopic lateral dimensions. We develop a fracture model to evaluate a pre-stretched free standing circular ultrathin nanomembrane and establish a relation between the energy release rate of a circumferential interface crack and the pre-strain in the membrane. Our results demonstrate that detachment cannot occur when the radius of the membrane is smaller than a critical size. This critical radius is inversely proportional to the Young’s modulus and square of the pre-strain of the membrane

    Effect of clinical and virological parameters on the level of neutralizing antibody against pandemic influenza A virus H1N1 2009

    Get PDF
    Background. Little is known about the antibody response in natural infection by the novel 2009 influenza A (H1N1) virus and its relationship with clinical and virological parameters. The relative lack of background neutralizing antibody against this novel virus provides a unique opportunity for understanding this issue. Methods. Case patients presenting with influenza-like illness who were positive for the pandemic H1 gene by reverse transcription polymerase chain reaction were identified. The serum antibody response was assayed by neutralizing antibody titer (NAT) against the virus in 881 convalescent donors. We retrospectively analyzed clinical parameters and viral load. Results. Ninety percent of the 881 convalescent donors had seroprotective titer of 1:40 or greater. The geometric mean titer of donors with convalescent NAT measured between day 21 and 42 was 1:101.1. Multivariate analysis by ordinal regression showed that pneumonia (odds ratio, 3.39; 95% confidence interval, 1.49-9-7.61; P=.004) and sputum production (odds ratio, 1.75; 95% CI, 1.01-3.01; P=.046) were the 2 independent factors associated with a higher level of convalescent NAT. Being afebrile on influenza presentation was associated with subsequent poor NAT (<1:40) response (P = .04). A positive correlation between the nasopharyngeal viral load on presentation and the convalescent NAT was demonstrated (Spearman correlation r, 0.238; P = .026). Conclusions. About 10% of these convalescent patients do not have a seroprotective NAT and may benefit from vaccination to prevent reinfection. The convalescent NAT correlated well with the initial viral load and was independently associated with severity of the viral illness, including pneumonia. The findings provide both the clinical and virological markers for identifying potential convalescent plasma donors with high serum NAT, which can be used to produce hyperimmune intravenous immunoglobulin in a randomized treatment trial for patients with severe pandemic H1N1 infection. © 2010 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio
    corecore