1,501 research outputs found
SU(3)-Flavor-Analysis of Nonfactorizable Contributions to Decays
We study charm D - meson decays to two pseudoscalar mesons in Cabibbo favored
mode employing SU(3)-flavor for the nonfactorizable matrix elements. Using
and to fix the reduced
matrix elements, we obtain a consistent fit for and emitting
decays of and mesons.Comment: Latex, 13 page
Superconductors with Magnetic Impurities: Instantons and Sub-gap States
When subject to a weak magnetic impurity potential, the order parameter and
quasi-particle energy gap of a bulk singlet superconductor are suppressed.
According to the conventional mean-field theory of Abrikosov and Gor'kov, the
integrity of the energy gap is maintained up to a critical concentration of
magnetic impurities. In this paper, a field theoretic approach is developed to
critically analyze the validity of the mean field theory. Using the
supersymmetry technique we find a spatially homogeneous saddle-point that
reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions
to the density of states that render the quasi-particle energy gap soft at any
non-zero magnetic impurity concentration. The sub-gap states are associated
with supersymmetry broken field configurations of the action. An analysis of
fluctuations around these configurations shows how the underlying supersymmetry
of the action is restored by zero modes. An estimate of the density of states
is given for all dimensionalities. To illustrate the universality of the
present scheme we apply the same method to study `gap fluctuations' in a normal
quantum dot coupled to a superconducting terminal. Using the same instanton
approach, we recover the universal result recently proposed by Vavilov et al.
Finally, we emphasize the universality of the present scheme for the
description of gap fluctuations in d-dimensional superconducting/normal
structures.Comment: 18 pages, 9 eps figure
Two-Body Cabibbo-Suppressed Charmed Meson Decays
Singly-Cabibbo-suppressed decays of charmed particles governed by the quark
subprocesses and are analyzed using a
flavor-topology approach, based on a previous analysis of the Cabibbo-favored
decays governed by . Decays to and , where is a
pseudoscalar meson and is a vector meson, are considered. We include
processes in which and are produced.Comment: 18 pages, latex, 2 figures, to be submitted to Phys. Rev.
Fuchsian convex bodies: basics of Brunn--Minkowski theory
The hyperbolic space \H^d can be defined as a pseudo-sphere in the
Minkowski space-time. In this paper, a Fuchsian group is a group of
linear isometries of the Minkowski space such that \H^d/\Gamma is a compact
manifold. We introduce Fuchsian convex bodies, which are closed convex sets in
Minkowski space, globally invariant for the action of a Fuchsian group. A
volume can be associated to each Fuchsian convex body, and, if the group is
fixed, Minkowski addition behaves well. Then Fuchsian convex bodies can be
studied in the same manner as convex bodies of Euclidean space in the classical
Brunn--Minkowski theory. For example, support functions can be defined, as
functions on a compact hyperbolic manifold instead of the sphere.
The main result is the convexity of the associated volume (it is log concave
in the classical setting). This implies analogs of Alexandrov--Fenchel and
Brunn--Minkowski inequalities. Here the inequalities are reversed
Transport spin polarization of Ni_xFe_{1-x}: electronic kinematics and band structure
We present measurements of the transport spin polarization of Ni_xFe_{1-x}
(0<x<1) using the recently-developed Point Contact Andreev Reflection
technique, and compare them with our first principles calculations of the spin
polarization for this system. Surpisingly, the measured spin polarization is
almost composition-independent. The results clearly demonstrate that the sign
of the transport spin polarization does not coincide with that of the
difference of the densities of states at the Fermi level. Calculations indicate
that the independence of the spin polarization of the composition is due to
compensation of density of states and Fermi velocity in the s- and d- bands
A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1
We have carried out a high statistics (2 Billion events) search for
ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3
and Hercules X-1. Using data taken with the CASA-MIA detector over a five year
period (1990-1995), we find no evidence for steady emission from either source
at energies above 115 TeV. The derived upper limits on such emission are more
than two orders of magnitude lower than earlier claimed detections. We also
find no evidence for neutral particle or gamma-ray emission from either source
on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for
emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of
large radio flares. Unless one postulates that these sources were very active
earlier and are now dormant, the limits presented here put into question the
earlier results, and highlight the difficulties that possible future
experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published
in Physical Review
From Fake Supergravity to Superstars
The fake supergravity method is applied to 5-dimensional asymptotically AdS
spacetimes containing gravity coupled to a real scalar and an abelian gauge
field. The motivation is to obtain bulk solutions with R x S^3 symmetry in
order to explore the AdS/CFT correspondence when the boundary gauge theory is
on R x S^3. A fake supergravity action, invariant under local supersymmetry
through linear order in fermion fields, is obtained. The gauge field makes
things more restrictive than in previous applications of fake supergravity
which allowed quite general scalar potentials. Here the superpotential must
take the form W(\phi) ~ exp(-k\phi) + c exp(2\phi/(3k)), and the only freedom
is the choice of the constant k. The fermion transformation rules of fake
supergravity lead to fake Killing spinor equations. From their integrability
conditions, we obtain first order differential equations which we solve
analytically to find singular electrically charged solutions of the Lagrangian
field equations. A Schwarzschild mass term can be added to produce a horizon
which shields the singularity. The solutions, which include "superstars", turn
out to be known in the literature. We compute their holographic parameters.Comment: 42 pages, 3 figure
Final-State Phases in Charmed Meson Two-Body Nonleptonic Decays
Observed decay rates indicate large phase differences among the amplitudes
for the charge states in and but
relatively real amplitudes in the charge states for . This
feature is traced using an SU(3) flavor analysis to a sign flip in the
contribution of one of the amplitudes contributing to the latter processes in
comparison with its contribution to the other two sets. This amplitude may be
regarded as an effect of rescattering and is found to be of magnitude
comparable to others contributing to charmed particle two-body nonleptonic
decays.Comment: 19 pages, latex, 4 figures, to be submitted to Phys. Rev.
Neutrino Propagation in a Strongly Magnetized Medium
We derive general expressions at the one-loop level for the coefficients of
the covariant structure of the neutrino self-energy in the presence of a
constant magnetic field. The neutrino energy spectrum and index of refraction
are obtained for neutral and charged media in the strong-field limit () using the lowest Landau level
approximation. The results found within the lowest Landau level approximation
are numerically validated, summing in all Landau levels, for strong and weakly-strong fields. The neutrino energy in
leading order of the Fermi coupling constant is expressed as the sum of three
terms: a kinetic-energy term, a term of interaction between the magnetic field
and an induced neutrino magnetic moment, and a rest-energy term. The leading
radiative correction to the kinetic-energy term depends linearly on the
magnetic field strength and is independent of the chemical potential. The other
two terms are only present in a charged medium. For strong and weakly-strong
fields, it is found that the field-dependent correction to the neutrino energy
in a neutral medium is much larger than the thermal one. Possible applications
to cosmology and astrophysics are considered.Comment: 23 pages, 4 figures. Corrected misprints in reference
Fractal Reconnection in Solar and Stellar Environments
Recent space based observations of the Sun revealed that magnetic
reconnection is ubiquitous in the solar atmosphere, ranging from small scale
reconnection (observed as nanoflares) to large scale one (observed as long
duration flares or giant arcades). Often the magnetic reconnection events are
associated with mass ejections or jets, which seem to be closely related to
multiple plasmoid ejections from fractal current sheet. The bursty radio and
hard X-ray emissions from flares also suggest the fractal reconnection and
associated particle acceleration. We shall discuss recent observations and
theories related to the plasmoid-induced-reconnection and the fractal
reconnection in solar flares, and their implication to reconnection physics and
particle acceleration. Recent findings of many superflares on solar type stars
that has extended the applicability of the fractal reconnection model of solar
flares to much a wider parameter space suitable for stellar flares are also
discussed.Comment: Invited chapter to appear in "Magnetic Reconnection: Concepts and
Applications", Springer-Verlag, W. D. Gonzalez and E. N. Parker, eds. (2016),
33 pages, 18 figure
- …
