156,370 research outputs found

    Large-N scaling behavior of the quantum fisher information in the Dicke model

    Full text link
    Quantum Fisher information (QFI) of the reduced two-atom state is employed to capture the quantum criticality of the superradiant phase transition in the Dicke model in the infinite size and finite-NN systems respectively. The analytical expression of the QFI of its ground state is evaluated explicitly. And finite-size scaling analysis is performed with the large accessible system size due to the effective bosonic coherent-state technique. We also investigate the large-size scaling behavior of the scaled QFI of the reduced NN-atom state and show the accurate exponent.Comment: 6pages,2figure

    Generalized rotating-wave approximation to biased qubit-oscillator systems

    Full text link
    The generalized rotating-wave approximation with counter-rotating interactions has been applied to a biased qubit-oscillator system. Analytical expressions are explicitly given for all eigenvalues and eigenstates. For a flux qubit coupled to superconducting oscillators, spectra calculated by our approach are in excellent agreement with experiment. Calculated energy levels for a variety of biases also agree well with those obtained via exact diagonalization for a wide range of coupling strengths. Dynamics of the qubit has also been examined, and results lend further support to the validity of the analytical approximation employed here. Our approach can be readily implemented and applied to superconducting qubit-oscillator experiments conducted currently and in the near future with a biased qubit and for all accessible coupling strengths

    Quantum phase transition in the one-dimensional period-two and uniform compass model

    Full text link
    Quantum phase transition in the one-dimensional period-two and uniform quantum compass model are studied by using the pseudo-spin transformation method and the trace map method. The exact solutions are presented, the fidelity, the nearest-neighbor pseudo-spin entanglement, spin and pseudo-spin correlation functions are then calculated. At the critical point, the fidelity and its susceptibility change substantially, the gap of pseudo-spin concurrence is observed, which scales as 1/N1/N (N is system size). The spin correlation functions show smooth behavior around the critical point. In the period-two chain, the pseudo-spin correlation functions exhibit a oscillating behavior, which is absent in the unform chain. The divergent correlation length at the critical point is demonstrated in the general trend for both cases.Comment: 5 pages, 6 figure

    Amphiphilic blockers punch through a mutant CLC-0 pore.

    Get PDF
    Intracellularly applied amphiphilic molecules, such as p-chlorophenoxy acetate (CPA) and octanoate, block various pore-open mutants of CLC-0. The voltage-dependent block of a particular pore-open mutant, E166G, was found to be multiphasic. In symmetrical 140 mM Cl(-), the apparent affinity of the blocker in this mutant increased with a negative membrane potential but, paradoxically, decreased when the negative membrane potential was greater than -80 mV, a phenomenon similar to the blocker "punch-through" shown in many blocker studies of cation channels. To provide further evidence of the punch-through of CPA and octanoate, we studied the dissociation rate of the blocker from the pore by measuring the time constant of relief from the block under various voltage and ionic conditions. Consistent with the voltage dependence of the effect on the steady-state current, the rate of CPA dissociation from the E166G pore reached a minimum at -80 mV in symmetrical 140 mM Cl(-), and the direction of current recovery suggested that the bound CPA in the pore can dissociate into both intracellular and extracellular solutions. Moreover, the CPA dissociation depends upon the Cl(-) reversal potential with a minimal dissociation rate at a voltage 80 mV more negative than the Cl(-) reversal potential. That the shift of the CPA-dissociation rate follows the Cl(-) gradient across the membrane argues that these blockers can indeed punch through the channel pore. Furthermore, a minimal CPA-dissociation rate at a voltage 80 mV more negative than the Cl(-) reversal potential suggests that the outward blocker movement through the CLC-0 pore is more difficult than the inward movement
    • …
    corecore