199 research outputs found

    Effect of magnetic field on the spin resonance in FeTe(0.5)Se(0.5) as seen via inelastic neutron scattering

    Full text link
    Inelastic neutron scattering and susceptibility measurements have been performed on the optimally-doped Fe-based superconductor FeTe(0.5)Se(0.5), which has a critical temperature, Tc of 14 K. The magnetic scattering at the stripe antiferromagnetic wave-vector Q = (0.5,0.5) exhibits a "resonance" at ~ 6 meV, where the scattering intensity increases abruptly when cooled below Tc. In a 7-T magnetic field parallel to the a-b plane, Tc is slightly reduced to ~ 12 K, based on susceptibility measurements. The resonance in the neutron scattering measurements is also affected by the field. The resonance intensity under field cooling starts to rise at a lower temperature ~ 12 K, and the low temperature intensity is also reduced from the zero-field value. Our results provide clear evidence for the intimate relationship between superconductivity and the resonance measured in magnetic excitations of Fe-based superconductors.Comment: 4 pages, 3 figure

    Direct observation of magnon-phonon coupling in yttrium iron garnet

    Get PDF
    The magnetic insulator yttrium iron garnet (YIG) with a ferrimagnetic transition temperature of ∼\sim560 K has been widely used in microwave and spintronic devices. Anomalous features in the spin Seeback effect (SSE) voltages have been observed in Pt/YIG and attributed to the magnon-phonon coupling. Here we use inelastic neutron scattering to map out low-energy spin waves and acoustic phonons of YIG at 100 K as a function of increasing magnetic field. By comparing the zero and 9.1 T data, we find that instead of splitting and opening up gaps at the spin wave and acoustic phonon dispersion intersecting points, magnon-phonon coupling in YIG enhances the hybridized scattering intensity. These results are different from expectations of conventional spin-lattice coupling, calling for new paradigms to understand the scattering process of magnon-phonon interactions and the resulting magnon-polarons.Comment: 5 pages, 4 figures, PRB in pres
    • …
    corecore