395 research outputs found
Visualizing quantum entanglement and the EPR paradox during the photodissociation of a diatomic molecule using two ultrashort laser pulses
We investigate theoretically the dissociative ionization of a H2+ molecule
using two ultrashort laser (pump-probe) pulses. The pump pulse prepares a
dissociating nuclear wave packet on an ungerade surface of H2+. Next, an UV (or
XUV) probe pulse ionizes this dissociating state at large (R = 20 - 100 bohr)
internuclear distance. We calculate the momenta distributions of protons and
photoelectrons which show a (two-slit-like) interference structure. A general,
simple interference formula is obtained which depends on the electron and
protons momenta, as well as on the pump-probe delay on the pulses durations and
polarizations. This interference can be interpreted as visualization of an
electron state delocalized over the two-centres. This state is an entangled
state of a hydrogen atom with a momentum p and a proton with an opposite
momentum. -p dissociating on the ungerade surface of H2+. This pump-probe
scheme can be used to reveal the nonlocality of the electron which intuitively
should be localized on just one of the protons separated by the distance R much
larger than the atomic Bohr orbit
Experimental demonstration of higher-order Laguerre-Gauss mode interferometry
The compatibility of higher-order Laguerre-Gauss (LG) modes with
interferometric technologies commonly used in gravitational wave detectors is
investigated. In this paper we present the first experimental results
concerning the performance of the LG33 mode in optical resonators. We show that
the Pound-Drever-Hall error signal for a LG33 mode in a linear optical
resonator is identical to that of the more commonly used LG00 mode, and
demonstrate the feedback control of the resonator with a LG33 mode. We
succeeded to increase the mode purity of a LG33 mode generated using a
spatial-light modulator from 51% to 99% upon transmission through a linear
optical resonator. We further report the experimental verification that a
triangular optical resonator does not transmit helical LG modes
Complete controllability of quantum systems
Sufficient conditions for complete controllability of -level quantum
systems subject to a single control pulse that addresses multiple allowed
transitions concurrently are established. The results are applied in particular
to Morse and harmonic-oscillator systems, as well as some systems with
degenerate energy levels. Morse and harmonic oscillators serve as models for
molecular bonds, and the standard control approach of using a sequence of
frequency-selective pulses to address a single transition at a time is either
not applicable or only of limited utility for such systems.Comment: 8 pages, expanded and revised versio
Probing seed black holes using future gravitational-wave detectors
Identifying the properties of the first generation of seeds of massive black
holes is key to understanding the merger history and growth of galaxies.
Mergers between ~100 solar mass seed black holes generate gravitational waves
in the 0.1-10Hz band that lies between the sensitivity bands of existing
ground-based detectors and the planned space-based gravitational wave detector,
the Laser Interferometer Space Antenna (LISA). However, there are proposals for
more advanced detectors that will bridge this gap, including the third
generation ground-based Einstein Telescope and the space-based detector DECIGO.
In this paper we demonstrate that such future detectors should be able to
detect gravitational waves produced by the coalescence of the first generation
of light seed black-hole binaries and provide information on the evolution of
structure in that era. These observations will be complementary to those that
LISA will make of subsequent mergers between more massive black holes. We
compute the sensitivity of various future detectors to seed black-hole mergers,
and use this to explore the number and properties of the events that each
detector might see in three years of observation. For this calculation, we make
use of galaxy merger trees and two different seed black hole mass distributions
in order to construct the astrophysical population of events. We also consider
the accuracy with which networks of future ground-based detectors will be able
to measure the parameters of seed black hole mergers, in particular the
luminosity distance to the source. We show that distance precisions of ~30% are
achievable, which should be sufficient for us to say with confidence that the
sources are at high redshift.Comment: 14 pages, 6 figures, 2 tables, accepted for proceedings of 13th GWDAW
meetin
Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system
The effects of Coherent excitation of a two level system with a linearly
chirped pulse are studied theoretically and experimentally (in Rb (5s - 5p)) in
the low field regime. The Coherent Transients are measured directly on the
excited state population on an ultrashort time scale. A sharp step corresponds
to the passage through resonance. It is followed by oscillations resulting from
interferences between off-resonant and resonant contributions. We finally show
the equivalence between this experiment and Fresnel diffraction by a sharp
edge.Comment: 4 pages, 4 figures, to appear in PR
DC-readout of a signal-recycled gravitational wave detector
All first-generation large-scale gravitational wave detectors are operated at
the dark fringe and use a heterodyne readout employing radio frequency (RF)
modulation-demodulation techniques. However, the experience in the currently
running interferometers reveals several problems connected with a heterodyne
readout, of which phase noise of the RF modulation is the most serious one. A
homodyne detection scheme (DC-readout), using the highly stabilized and
filtered carrier light as local oscillator for the readout, is considered to be
a favourable alternative. Recently a DC-readout scheme was implemented on the
GEO 600 detector. We describe the results of first measurements and give a
comparison of the performance achieved with homodyne and heterodyne readout.
The implications of the combined use of DC-readout and signal-recycling are
considered.Comment: 11 page
Coherent Control of Multiphoton Transitions with Femtosecond pulse shaping
We explore the effects of ultrafast shaped pulses for two-level systems that
do not have a single photon resonance by developing a multiphoton
density-matrix approach. We take advantage of the fact that the dynamics of the
intermediate virtual states are absent within our laser pulse timescales. Under
these conditions, the multiphoton results are similar to the single photon and
that it is possible to extend the single photon coherent control ideas to
develop multiphoton coherent control.Comment: 13 pages, 7 figures. submitted to PR
Momentum transfer using chirped standing wave fields: Bragg scattering
We consider momentum transfer using frequency-chirped standing wave fields.
Novel atom-beam splitter and mirror schemes based on Bragg scattering are
presented. It is shown that a predetermined number of photon momenta can be
transferred to the atoms in a single interaction zone.Comment: 4 pages, 3 figure
Feasibility of measuring the Shapiro time delay over meter-scale distances
The time delay of light as it passes by a massive object, first calculated by
Shapiro in 1964, is a hallmark of the curvature of space-time. To date, all
measurements of the Shapiro time delay have been made over solar-system
distance scales. We show that the new generation of kilometer-scale laser
interferometers being constructed as gravitational wave detectors, in
particular Advanced LIGO, will in principle be sensitive enough to measure
variations in the Shapiro time delay produced by a suitably designed rotating
object placed near the laser beam. We show that such an apparatus is feasible
(though not easy) to construct, present an example design, and calculate the
signal that would be detectable by Advanced LIGO. This offers the first
opportunity to measure space-time curvature effects on a laboratory distance
scale.Comment: 13 pages, 6 figures; v3 has updated instrumental noise curves plus a
few text edits; resubmitted to Classical and Quantum Gravit
- …