20 research outputs found

    X-ray Evaluation of the Marshall Grazing Incidence X-Ray Spectrometer (MaGIXS) Nickel-Replicated Mirrors

    Get PDF
    X-ray observations of astronomical objects provides diagnostics not available in any other wavelength regime, however the capability of making these observation at a high spatial resolution has proven challenging. Recently, NASA Marshall Space Flight Center (MSFC) has made good progress in employing computer numerical control (CNC) polishing techniques on electroless nickel mandrels as part of our replicated grazing incidence optics program. CNC polishing has afforded the ability to deterministically refine mandrel figure, thereby improving mirror performance. The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a MSFC-led sounding rocket instrument that is designed to make the first ever soft x-ray spectral observations of the Sun spatially resolved along a narrow slit. MaGIXS incorporates some of the first mirrors produced at MSFC using this polishing technique. Here we present the predicted mirror performance obtained from metrology, after completion of CNC polishing, as well as the results of X-ray tests performed on the MaGIXS telescope mirror before and after mounting

    The Interface Region Imaging Spectrograph (IRIS)

    Get PDF
    The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s temporal resolution and 1 km/s velocity resolution over a field-of-view of up to 175 arcsec x 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains spectra in passbands from 1332-1358, 1389-1407 and 2783-2834 Angstrom including bright spectral lines formed in the chromosphere (Mg II h 2803 Angstrom and Mg II k 2796 Angstrom) and transition region (C II 1334/1335 Angstrom and Si IV 1394/1403 Angstrom). Slit-jaw images in four different passbands (C II 1330, Si IV 1400, Mg II k 2796 and Mg II wing 2830 Angstrom) can be taken simultaneously with spectral rasters that sample regions up to 130 arcsec x 175 arcsec at a variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative-MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by IRIS each day and made available for unrestricted use within a few days of the observation.Comment: 53 pages, 15 figure

    The Interface Region Imaging Spectrograph (IRIS)

    Full text link

    Test of the Equivalence Principle in an Einstein Elevator

    No full text
    This Annual Report illustrates the work carried out during the last grant-year activity on the Test of the Equivalence Principle in an Einstein Elevator. The activity focused on the following main topics: (1) analysis and conceptual design of a detector configuration suitable for the flight tests; (2) development of techniques for extracting a small signal from data strings with colored and white noise; (3) design of the mechanism that spins and releases the instrument package inside the cryostat; and (4) experimental activity carried out by our non-US partners (a summary is shown in this report). The analysis and conceptual design of the flight-detector (point 1) was focused on studying the response of the differential accelerometer during free fall, in the presence of errors and precession dynamics, for various detector's configurations. The goal was to devise a detector configuration in which an Equivalence Principle violation (EPV) signal at the sensitivity threshold level can be successfully measured and resolved out of a much stronger dynamics-related noise and gravity gradient. A detailed analysis and comprehensive simulation effort led us to a detector's design that can accomplish that goal successfully

    Test of the Equivalence Principle in an Einstein Elevator

    No full text
    The scientific goal of the experiment is to test the equality of gravitational and inertial mass (i.e., to test the Principle of Equivalence) by measuring the independence of the rate of fall of bodies from their compositions. The measurement is accomplished by measuring the relative displacement (or equivalently acceleration) of two falling bodies of different materials which are the proof masses of a differential accelerometer spinning about an horizontal axis to modulate a possible violation signal. A non-zero differential acceleration appearing at the signal frequency will indicate a violation of the Equivalence Principle. The goal of the experiment is to measure the Eotvos ratio og/g (differential acceleration/common acceleration) with a targeted accuracy that is about two orders of magnitude better than the state of the art (presently at several parts in 10(exp 13). The analyses carried out during this first grant year have focused on: (1) evaluation of possible shapes for the proof masses to meet the requirements on the higher-order mass moment disturbances generated by the falling capsule; (2) dynamics of the instrument package and differential acceleration measurement in the presence of errors and imperfections; (3) computation of the inertia characteristic of the instrument package that enable a separation of the signal from the dynamics-related noise; (4) a revised thermal analysis of the instrument package in light of the new conceptual design of the cryostat; (5) the development of a dynamic and control model of the capsule attached to the gondola and balloon to define the requirements for the leveling mechanism (6) a conceptual design of the leveling mechanism that keeps the capsule aligned before release from the balloon; and (7) a new conceptual design of the customized cryostat and a preliminary valuation of its cost. The project also involves an international cooperation with the Institute of Space Physics (IFSI) in Rome, Italy. The group at IFSI is in charge of prototyping the differential accelerometer and carrying out precursor laboratory measurements. During this grant year, our partners analyzed and then designed a new prototype of differential accelerometer that has several characteristics in common with the flight accelerometer at this point of the instrument development. The highlights of these activities are documented in a section of this report

    Test of the Weak Equivalence Principle in an Einstein Elevator

    No full text
    Abstract - A technique for testing the weak-equivalence principle is presented. This technique involves the measurement of differential accelerations between two test masses of different materials (e.g., aluminum and gold) free falling inside a 3-m-long cryostat dropped from a 40 km altitude balloon. The free-fall duration is 30 s for a non-propelled cryostat. The falling test masses are part of a high-sensitivity differential detector with a foreseeable sensitivity in detecting differential accelerations of about 1.5x10^ 1213 g/sqrt(Hz) (at the liquid-nitrogen temperature of 77 K) and 1.5x10^ 1214 g/sqrt(Hz) (at the liquid-helium temperature of 4 K). The detector is spun about a horizontal axis at a frequency of typically 1 Hz in order to modulate the gravity signal during free fall. The estimated accuracies, with 95% confidence level, in testing the weak-equivalence principle in a 30 s integration time are 5 parts in 10^14 at the temperature of liquid nitrogen and 5 parts in 10^15 at the temperature of liquid helium

    Development of Accelerometer Prototype for Testing the Equivalence Principle in Free Fall

    No full text
    Abstract - Progresses in the development of a free-fall test of the Principle of Equivalence (PE) are reported with particular emphasis on the work related to development of the differential accelerometer prototype and its laboratory tests. The PE experiment is planned to be carried out in free-fall conditions, inside a capsule (Einstein elevator) released from a stratospheric balloon. The accuracy goal for the experiment is a few parts in 10^15 with an integration time of about 25 s. This accuracy, if reached, would imply an improvement of two orders of magnitude in testing the PE with respect to the state of the art in this field
    corecore