105,725 research outputs found

    On numerical integration and computer implementation of viscoplastic models

    Get PDF
    Due to the stringent design requirement for aerospace or nuclear structural components, considerable research interests have been generated on the development of constitutive models for representing the inelastic behavior of metals at elevated temperatures. In particular, a class of unified theories (or viscoplastic constitutive models) have been proposed to simulate material responses such as cyclic plasticity, rate sensitivity, creep deformations, strain hardening or softening, etc. This approach differs from the conventional creep and plasticity theory in that both the creep and plastic deformations are treated as unified time-dependent quantities. Although most of viscoplastic models give better material behavior representation, the associated constitutive differential equations have stiff regimes which present numerical difficulties in time-dependent analysis. In this connection, appropriate solution algorithm must be developed for viscoplastic analysis via finite element method

    Turbulence Time Series Data Hole Filling using Karhunen-Loeve and ARIMA methods

    Get PDF
    Measurements of optical turbulence time series data using unattended instruments over long time intervals inevitably lead to data drop-outs or degraded signals. We present a comparison of methods using both Principal Component Analysis, which is also known as the Karhunen--Loeve decomposition, and ARIMA that seek to correct for these event-induced and mechanically-induced signal drop-outs and degradations. We report on the quality of the correction by examining the Intrinsic Mode Functions generated by Empirical Mode Decomposition. The data studied are optical turbulence parameter time series from a commercial long path length optical anemometer/scintillometer, measured over several hundred metres in outdoor environments.Comment: 8 pages, 9 figures, submitted to ICOLAD 2007, City University, London, U

    Combustion: Structural interaction in a viscoelastic material

    Get PDF
    The effect of interaction between combustion processes and structural deformation of solid propellant was considered. The combustion analysis was performed on the basis of deformed crack geometry, which was determined from the structural analysis. On the other hand, input data for the structural analysis, such as pressure distribution along the crack boundary and ablation velocity of the crack, were determined from the combustion analysis. The interaction analysis was conducted by combining two computer codes, a combustion analysis code and a general purpose finite element structural analysis code

    Rational Approximate Symmetries of KdV Equation

    Full text link
    We construct one-parameter deformation of the Dorfman Hamiltonian operator for the Riemann hierarchy using the quasi-Miura transformation from topological field theory. In this way, one can get the approximately rational symmetries of KdV equation and then investigate its bi-Hamiltonian structure.Comment: 14 pages, no figure

    Fitting Precision Electroweak Data with Exotic Heavy Quarks

    Get PDF
    The 1999 precision electroweak data from LEP and SLC persist in showing some slight discrepancies from the assumed standard model, mostly regarding bb and cc quarks. We show how their mixing with exotic heavy quarks could result in a more consistent fit of all the data, including two unconventional interpretations of the top quark.Comment: 7 pages, no figure, 2 typos corrected, 1 reference update

    A comparison of wake characteristics of model and prototype buildings in transverse winds

    Get PDF
    Previously measured mean velocity and turbulence intensity profiles in the wake of a 26.8-m long building 3.2 m high and transverse to the wind direction in an atmospheric boundary layer several hundred meters thick were compared with profiles at corresponding stations downstream of a 1/50-scale model on the floor of a large meteorological wind tunnel in a boundary layer 0.61 m in thickness. The validity of using model wake data to predict full scale data was determined. Preliminary results are presented which indicate that disparities result from differences in relative depth of logarithmic layers, surface roughness, and the proximity of upstream obstacles

    Dynamic analysis of the GEOS satellite

    Get PDF
    The assumed modes method is used to investigate the stability of the GEOS satellite. The system is discretized by representing the continuous displacement by finite series of space-dependent admissible functions multiplied by time-dependent generalized coordinates. The spatial dependence is eliminated by integration over the elastic domains, so that the testing functional reduces to a testing function. The sign properties of the testing function are then tested and the equilibrium defined as nontrivial. In considering the stability of small motions about nontrivial equilibrium, it is shown that if the analysis performed by ignoring the motion of the mass center indicates stability, then the system remains stable if the motion of the mass center is included

    Monte Carlo Algorithm for Simulating Reversible Aggregation of Multisite Particles

    Full text link
    We present an efficient and exact Monte Carlo algorithm to simulate reversible aggregation of particles with dedicated binding sites. This method introduces a novel data structure of dynamic bond tree to record clusters and sequences of bond formations. The algorithm achieves a constant time cost for processing cluster association and a cost between O(logM)\mathcal{O}(\log M) and O(M)\mathcal{O}(M) for processing bond dissociation in clusters with MM bonds. The algorithm is statistically exact and can reproduce results obtained by the standard method. We applied the method to simulate a trivalent ligand and a bivalent receptor clustering system and obtained an average scaling of O(M0.45)\mathcal{O}(M^{0.45}) for processing bond dissociation in acyclic aggregation, compared to a linear scaling with the cluster size in standard methods. The algorithm also demands substantially less memory than the conventional method.Comment: 8 pages, 3 figure
    corecore