109 research outputs found

    Three-dimensional turbo spin-echo magnetic resonance imaging (MRI) and semiquantitative assessment of knee osteoarthritis: comparison with two-dimensional routine MRI

    Get PDF
    SummaryPurposeThe aim of this study was to evaluate three-dimensional (3D) turbo spin-echo (TSE) magnetic resonance imaging (MRI) for semiquantitative assessment of knee OA.Materials and methodTwenty subjects fulfilling the American College of Rheumatology clinical criteria of knee OA underwent both two-dimensional (2D) and 3D MRIs on the same day. The 2D MRI protocol included triplanar fat-suppressed (FS) intermediate-weighted (Iw) TSE. For the 3D TSE technique, a sagittal FS Iw sequence was acquired and triplanar reformations were constructed. 2D and 3D MRIs were read separately by two radiologists using the Whole-Organ Magnetic Resonance Imaging Score (WORMS) system. Agreement was determined using weighted kappa statistics and percentage of overall agreement. The diagnostic performance of WORMS readings using 3D TSE MRI to detect the presence or absence of features was assessed using readings from 2D TSE images as a reference.ResultsAgreement for the scored features ranged between 0.62 (osteophytes (OS)) and 0.94 (meniscal extrusion). The sensitivity of WORMS readings using the 3D TSE technique ranged between 80% (periarticular cysts) and 100% (several features), the specificity ranged between 62.3% (OS) and 100% (several features), and accuracy ranged between 77.2% (OS) and 99.3% (subchondral cysts).ConclusionsSemiquantitative assessment of knee OA can be reliably performed using 3D TSE MRI, showing substantial to almost perfect agreement and high accuracy when compared to routine 2D TSE MRI. 3D TSE MRI also takes less time, which is important for large OA studies

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of ΄(1S) and ΄(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The ΄mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb−1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the ΄ mesons are found to be consistent with zero

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens
    • 

    corecore