17 research outputs found

    Multivariate modeling to identify patterns in clinical data: the example of chest pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In chest pain, physicians are confronted with numerous interrelationships between symptoms and with evidence for or against classifying a patient into different diagnostic categories. The aim of our study was to find natural groups of patients on the basis of risk factors, history and clinical examination data which should then be validated with patients' final diagnoses.</p> <p>Methods</p> <p>We conducted a cross-sectional diagnostic study in 74 primary care practices to establish the validity of symptoms and findings for the diagnosis of coronary heart disease. A total of 1199 patients above age 35 presenting with chest pain were included in the study. General practitioners took a standardized history and performed a physical examination. They also recorded their preliminary diagnoses, investigations and management related to the patient's chest pain. We used multiple correspondence analysis (MCA) to examine associations on variable level, and multidimensional scaling (MDS), k-means and fuzzy cluster analyses to search for subgroups on patient level. We further used heatmaps to graphically illustrate the results.</p> <p>Results</p> <p>A multiple correspondence analysis supported our data collection strategy on variable level. Six factors emerged from this analysis: „chest wall syndrome“, „vital threat“, „stomach and bowel pain“, „angina pectoris“, „chest infection syndrome“, and „ self-limiting chest pain“. MDS, k-means and fuzzy cluster analysis on patient level were not able to find distinct groups. The resulting cluster solutions were not interpretable and had insufficient statistical quality criteria.</p> <p>Conclusions</p> <p>Chest pain is a heterogeneous clinical category with no coherent associations between signs and symptoms on patient level.</p

    Human population structure detection via multilocus genotype clustering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We describe a hierarchical clustering algorithm for using Single Nucleotide Polymorphism (SNP) genetic data to assign individuals to populations. The method does not assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population individuals.</p> <p>Results</p> <p>We show that the algorithm can assign sample individuals highly accurately to their corresponding ethnic groups in our tests using HapMap SNP data and it is also robust to admixed populations when tested with Perlegen SNP data. Moreover, it can detect fine-scale population structure as subtle as that between Chinese and Japanese by using genome-wide high-diversity SNP loci.</p> <p>Conclusion</p> <p>The algorithm provides an alternative approach to the popular STRUCTURE program, especially for fine-scale population structure detection in genome-wide association studies. This is the first successful separation of Chinese and Japanese samples using random SNP loci with high statistical support.</p
    corecore