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Abstract
Background: We describe a hierarchical clustering algorithm for using Single Nucleotide
Polymorphism (SNP) genetic data to assign individuals to populations. The method does not
assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population
individuals.

Results: We show that the algorithm can assign sample individuals highly accurately to their
corresponding ethnic groups in our tests using HapMap SNP data and it is also robust to admixed
populations when tested with Perlegen SNP data. Moreover, it can detect fine-scale population
structure as subtle as that between Chinese and Japanese by using genome-wide high-diversity SNP
loci.

Conclusion: The algorithm provides an alternative approach to the popular STRUCTURE
program, especially for fine-scale population structure detection in genome-wide association
studies. This is the first successful separation of Chinese and Japanese samples using random SNP
loci with high statistical support.

Background
Population structure analysis is important to genetic asso-
ciation studies and human evolutionary history investiga-
tions. Population structure may confound the population
based genetic association studies, leading to false positive
results and failure to detect true associations [1-4]. In
studies of human evolution, populations are usually con-
sidered groups of interest and there has been a significant
amount of work dedicated to learning about the relation-
ships among modern populations [5-9].

Two major approaches have been proposed to detect pop-
ulation structure: distance-based clustering methods and
model-based methods. Distance-based approaches utilize

the proportion of allele sharing as distances between indi-
viduals and are not computationally demanding. Since
some of the genetic information in the data is ignored,
such as allele frequencies, critics have suggested that dis-
tance-based methods are not suitable for detecting fine
population structure, even when many SNP loci are used
[10]. Contrary to these assertions, in this paper we dem-
onstrate the feasibility of using a distance-based method
to detect fine population structures. Model-based meth-
ods use standard statistical methods to estimate popula-
tion parameters, and usually assume Hardy-Weinberg
equilibrium for each population. The inference may not
be good in the presence of small sample sizes due to the
inaccurate estimation of allele frequencies. Model-based
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inference also depends heavily on the modeling assump-
tions.

STRUCTURE is a popular model-based program using
Markov chain Monte Carlo (MCMC) within a Bayesian
framework [11]. However several issues in STRUCTURE
have to be addressed carefully: missing data, the number
of clusters, and the covergence of MCMC [12]. Moreover,
STRUCTURE is computationally intensive. Recently, Pur-
cell and Sham proposed to use the Expectation Maximiza-
tion (EM) algorithm to detect population structure [13].
The EM algorithm is faster than STRUCTURE when many
markers are involved in the calculation, but for large num-
bers of loci the computational load is still challenging.
Both STRUCTURE and the EM algorithm assume that
marker loci are in linkage equilibrium within subpopula-
tions [11,13], which restricts the number of SNP loci that
can be used. Even the improved version of STRUCTURE
(version 2.0), which accounts for admixture Linkage Dis-
equilibrium (LD), does not handle background LD well
[14].

Many recent studies have been devoted to the human
population structure analysis using DNA genetic markers.
Bowcock et al. used 30 polymorphic microsatellites to
construct trees of human inividuals that reflect their geo-
graphic origin with a neighbor-joining algorithm [6].
Mountain and Cavalli-Sforza also used a neighbor-joining
algorithm to study human evolutionary history using an
average of 75 RFLPs per individual [7]. Pritchard et al.
pointed out that distance-based methods may be heavily
dependent on the distance measure and graphical repre-
sentation used, and may not be used for fine statistical
inference [11]. Rosenberg et al. used STRUCTURE to ana-
lyze 377 autosomal microsatellite loci in 1056 individuals
from 52 populations, and identified six main genetic clus-
ters [8]. However, the solutions for the East Asia group
were variable across runs when they tried to estimate pop-
ulation structure for the main regions. Turakulov and
Easteal used Ward's algorithm, with a score matrix of
Euclidean distances of allele sharing, for population struc-
ture analysis and concluded that the distance-clustering
algorithm may not be used to detect fine-scale population
structure [10]. Shriver et al. used 8,525 autosomal SNPs
and a neighbor joining algorithm to infer population sub-
structure in four populations: African-American, Euro-
pean-American, Chinese and Japanese [9]. They found a
bifurcation between clusters of 10 Chinese and 10 Japa-
nese individuals but with weak bootstrap support. Purcell
and Sham used an EM algorithm on population structure
analysis and validated the algorithm using simulated data
but they did not show its efficacy with real data sets [13].

In this paper we describe a distance-based algorithm, AW-
clust (Allele sharing distance and Ward's minimum vari-

ance hierarchical clustering), to assign individuals to pop-
ulations based on multilocus genotype data. The method
is different from previous distance-based approaches in
many respects. Bowcock et al. used a neighbor-joining
method to construct a human evolutionary tree [6], while
we use Ward's minimum variance to estimate sub-clusters.
Turakulov and Easteal used an Euclidean distance meas-
ure of allele mis-matches [10], while we used the allele
sharing distance directly. Nakamura et al. required all
markers to be unlinked and estimated the number of sub-
populations, K, by cross-validation and the k-means algo-
rithm in order to construct the hierarchical cluster [15],
while the AW-clust method does not have these restric-
tions. The AW-clust method also differs in how it updates
the distance matrix. Furthermore, the AW-clust method
does not assume Hardy-Weinberg equilibrium and link-
age equilibrium among loci in sample population indi-
viduals. There is also a conceptual difference in estimating
K, the correct number of populations. We view this as a
variable that need not be determined in advance.  Allow-
ing K to vary gives researchers an opportunity to effec-
tively define the resolution of their investigation in
response to the particular problem they are addressing. If
only rough distinctions need to be made between popula-
tions, the resulting tree can be examined at a high level. If
the study requires highly refined distinctions, the tree can
be examined at a low level. Once we had determined the
number of SNP loci needed to differentiate populations,
we used Tibshirani et al.'s gap statistic [16] to objectively
verify K. 

We applied the AW-clust algorithm to two large human
SNP data sets from the HapMap project [17] and Perlegen
[18]. The algorithm accurately assigns HapMap sample
individuals to the corresponding ethnic groups and it is
also robust to admixed populations when tested on Perle-
gen data. Despite the suggestion that distance-clustering
analysis may not detect fine-scale population structure
[10,11], we have successfully differentiated Chinese and
Japanese sample individuals using HapMap data. This is
the first successful detection of fine-scale population
structure as subtle as that between Chinese and Japanese
with high statistical support using genome-wide random
SNP loci. We anticipate that other closely related popula-
tions may be separated by similar approaches. Using a
larger number of SNP markers, AW-clust has the power to
accurately detect population structure and assign individ-
uals to their ethnic group and shows that it is not be nec-
essary to estimate allele frequencies or LD in order to
differentiate populations.

Results
Results of simulation study
We found that both the number of SNP loci and the
length of generations since isolation have a strong impact
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on the clustering results. When two populations had been
isolated for time, t = 0.75 (scaled in terms of 2N genera-
tions), the mean ± standard deviation for the Classifica-
tion Error Rates (CERs – see the Methods section for more
details) were 0.01 ± 0.01, 0.05 ± 0.03 and 0.12 ± 0.05
using 200, 100 and 50 SNP loci respectively. For t = 0.05,
the mean ± standard deviation for the CERs were 0.05 ±
0.03, 0.12 ± 0.05 and 0.22 ± 0.07 using 200, 100 and 50
SNP loci respectively. When the generations since isola-
tion were relatively short, several hundred SNP loci may
be insufficient to guarantee a low CER. When t = 0.015,
the mean ± standard deviation for CER were 0.03 ± 0.02,
0.08 ± 0.03 and 0.17 ± 0.05 using 2000, 1000 and 500
SNP loci respectively. Therefore, the quality of separation
is likely to be a function of t, the generations since isola-
tion, and the number of SNP loci used. When t is long, a
few loci are sufficient to guarantee a good separation. But
when t is relatively short, a large number of SNP loci is
required.

Results from empirical data
We used the AW-clust algorithm to assign individuals to
populations using HapMap data. A particular clustering
result using 200 random SNP loci for the 209 unrelated
sample individuals is plotted in Figure 1 (see also addi-
tional file 1). It is clear that there are three major clusters
in the separation, with all YRIs forming one cluster, all
CEUs forming another cluster, and all CHB+JPT forming
the remaining cluster.

What is the variation due to choice of SNP loci? What is
the number of SNP loci needed to get a good clustering
assignment? In order to answer these questions, we ran-
domly selected 50–1,000 SNP loci from across the 22
autosomal chromosomes, and ran the AW-clust algorithm
as described in the methods section. A dendrogram tree
was cut at depth 2 to generate three clusters. We replicated
each number of SNP loci tested 100 times to check the var-
iation due to SNP sampling. The quality of clustering was
plotted using boxplots in Figure 2. In the figure, we see
that the quality of clustering is lowest and the variation is
largest at 50 SNP loci. When 100 SNP loci were used, the
mean accuracy of assignment is ~98.8% with a standard
deviation of 0.01. Sample individuals could be assigned
with ~100% accuracy when ≥ 200 SNPs were used. Clus-
tering errors decreased with the increase of the number of
SNP loci used. In the CEU, YRI and CHB+JPT (CVJ) sub-
figures, all clustering plots with more than 400 SNP loci
have 100% correct assignment.

We then determined whether CHB and JPT samples could
be differentiated. The cluster plot in Figure 3(a) (see also
additional file 2) is based on one sample of 20,000 ran-
dom SNP loci. We see four distinct clusters in the figure
with all sample individuals clustered together according

A hierarchical cluster for the HapMap data with a sample of 200 SNPsFigure 1
A hierarchical cluster for the HapMap data with a 
sample of 200 SNPs. A total of 209 unrelated individuals 
from four populations are shown: CEU (60), YRI (60) and 
CHB (45) + JPT (44). This figure shows a clustering result 
using 200 genome-wide random autosomal SNP loci. It is evi-
dent that YRI, CEU and CHB+JPT form three distinct clus-
ters. Branch height represents dissimilarity. This figure shows 
the partial cluster, for the full image please see additional file 
1.
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to their ethnic groups even though the branch length for
CHB and JPT separation was much shorter compared with
the branch length of CEU, YRI and CVJ. There was one
misclassification: individual JPT28 was classified as CHB.
Figure 3(b) (see also additional file 3) is the magnified fig-
ure of the CHB and JPT clusters in (a).

We also combined the 45 CHBs and 44 JPTs together and
ran the AW-clust algorithm on the pooled sample. The
variation due to SNP selection was also checked with 100
replications. The quality of clustering was plotted using
boxplots in Figure 4. For the pooled whole sample, there
was, on average, ~90% correct assignment when 5,000
SNP loci were used. We found that with 30,000 random
SNPs we could get a mean accuracy of > 97% correct
assignment with a standard deviation of 0.02. The
number of random SNPs required to achieve this level of
accuracy can be further reduced by eliminating less
informative markers. After the pooled 89 individuals were

separated into two clusters, we calculated the allele fre-
quencies for each cluster and selected only the SNP loci
with the absolute allele frequency differences > 0.15. This
can reduce the number of SNPs more than 90%. We then
re-ran the cluster analysis on the reduced SNP data set.
The classification result was nearly as good as that from
the full SNP data set. We did not get 100% correct assign-
ment for CHB and JPT samples even when 500,000 ran-
dom SNP loci were used. The misclassification is mainly
from one individual, JPT28, which is likely to be misclas-
sified as CHB.

We also applied the AW-clust algorithm to the Perlegen
SNP data set, which contains the admixed population
African American (AA). We wanted to check the perform-
ance of the algorithm in the presence of admixed popula-
tions. A particular clustering result using 200 random SNP
loci from the 71 unrelated sample individuals is shown in
Figure 5. With the exception of the misclassification of
AA19, it is clear that AA, EA and HC sample individuals
form three discrete clusters. This shows that AW-clust can
separate the admixed populations.

The variation due to SNP sampling in the Perlegen SNP
data set was also examined. We randomly selected 50–
1,000 SNP loci from the 22 autosomal chromosomes, and
ran the AW-clust algorithm to separate individuals into
different clusters. A dendrogram tree was cut at depth 2 to
generate three clusters. We replicated each number of SNP
loci tested 100 times to check the variation due to SNP
sampling. The quality of clustering was plotted by box-
plots in Figure 6. The figure shows that the quality of clus-
tering is lowest and the variation is largest with 50 SNP
loci. When 100 random SNP loci were used, the mean
accuracy of assignment is ~95.3% with a standard devia-
tion of 0.032. Clustering errors decreased with the
increase of the number of SNP loci used. When 200 SNPs
were used in the clustering, the correct assignment had a
mean of 98.7% and a standard deviation of 0.015.
Increasing the number of SNP loci to 400 yielded a mean
correct assignment of 99.7% with a standard deviation of
0.007. Only marginal improvements were seen when
more than 400 SNPs were used. We also noticed that the
rate of correct assignment increased much faster for AA
and HC clusters than for EA cluster. AA and HC began to
get close to 100% correct assignment when only 200 SNP
loci were used, while EA required 400 SNP loci.

In all empirical studies the estimation of correct number
of populations, K, was identified from the major clusters
in the hierarchical cluster plot. These values for K were
then objectively verified using the gap statistic, in which
three scenarios were considered. First, we considered three
major populations in the HapMap data, CHB, YRI and
CHB+JPT (CHB and JPT being indistinguishable), using

The number of random SNP loci needed to correctly classify individuals in the HapMap dataFigure 2
The number of random SNP loci needed to correctly 
classify individuals in the HapMap data. Boxplots show 
the statistics of predicted origin vs. known origin for CEU, 
YRI and CHB+JPT (CVJ) estimated with different numbers of 
SNP loci. Each dendrogram tree was cut at depth 2 to gener-
ate three clusters and predicted origin was assigned by the 
major population group represented in the cluster. Each 
number of SNPs was randomly sampled 100 times from 22 
autosomal chromosomes. Horizontal lines are drawn at the 
1st quartile, 3rd quartile and median and are connected to 
form the box. A vertical dashed line is drawn down from the 
1st quartile to the most extreme data point within a distance 
of 1.5 interquartile range (IQR). A similar line is drawn up 
from the 3rd quartile. The ends of the vertical lines are indi-
cated by short horizontal lines. Outliers are marked by dots. 
Red diamonds are the means of the classification error rate 
for the pooled whole sample for each number of SNP loci 
tested and red arrows are mean ± standard deviation.
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Hierarchical clusters for the HapMap data with a sample of 20K SNPsFigure 3
Hierarchical clusters for the HapMap data with a sample of 20K SNPs. (a) A total of 209 unrelated individuals from 
four populations are shown: CEU (60), YRI (60), CHB (45) and JPT (44). This figure shows a clustering result using 20K 
genome-wide random autosomal SNP loci. It is evident that YRI, CEU, CHB and JPT form four distinct clusters except for the 
misclassification of JPT28. Branch height represents dissimilarity. Notice that compared with YRI and CEU branch height, the 
CHB and JPT branch height is much shorter, representing that the genetic distance between these two populations is relatively 
close. This figure shows the partial cluster, for the full image please see additional file 2. (b) The magnified figure of CHB and 
JPT clusters in (a). This figure shows the partial cluster, for the full image please see additional file 3.
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1,000 random genome-wide SNP loci. Second, only CHB
and JPT individuals were included using 30,000 random
SNP loci. Third, the three populations in the Perlegen data
were considered using 1,000 random SNP loci. The gap
statistic plots for each scenario are shown in Figure 7. The
log (Wk) estimations and gap curves are plotted in the left
(Figure 7(a),(c) and 7(e)) and right panels (Figure
7(b),(d) and 7(f)), respectively. The observed and
expected log (Wk) are indicated in red and blue and
marked by O and E separately for each K ranges from 1 to
6. The gap curved is plotted in the format of Gap (k) ±
standard deviation of log (Wk). The optimal K is the elbow
point in the observed log (Wk) plot, which corresponds to
the maximizing point in the gap curve. From the plots, the
estimated optimal K for each scenario is 3, 2 and 3, respec-
tively. Multiple runs gave similar results. Therefore, the
observation of K from the major clusters in the hierarchi-
cal cluster plot is reasonable and consistent with the gap
statistic estimation.

A hierarchical cluster for the Perlegen data with a sample of 200 SNPsFigure 5
A hierarchical cluster for the Perlegen data with a 
sample of 200 SNPs. A total of 71 unrelated individuals 
from three populations are shown: AA (23), EA (24) and HC 
(24). This figure shows a clustering result using 200 genome-
wide random autosomal SNP loci. It is evident that AA, EA 
and HC form three distinct clusters except for the misclassi-
fication of AA19. Branch height represents dissimilarity.
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The number of random SNP loci needed to correctly classify CHB and JPT from the HapMap dataFigure 4
The number of random SNP loci needed to correctly 
classify CHB and JPT from the HapMap data. Boxplots 
show the statistics of predicted origin vs. known origin for 
CHB and JPT estimated with different numbers of SNP loci. 
Each number of SNPs was randomly sampled 100 times from 
22 autosomal chromosomes. Horizontal lines are drawn at 
the 1st quartile, 3rd quartile and median and are connected 
to form the box. A vertical dashed line is drawn down from 
the 1st quartile to the most extreme data point within a dis-
tance of 1.5 interquartile range (IQR). A similar line is drawn 
up from the 3rd quartile. The ends of the vertical lines are 
indicated by short horizontal lines. Outliers are marked by 
dots. Red diamonds are the means of the classification error 
rate for the whole sample for each number of SNP loci 
tested and red arrows are mean ± standard deviation.
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Discussion
To distinguish populations, the ideal loci are those that
have an allele fixed in one population and absent in the
other populations [19-21]. For the HapMap data, SNPs
were sequenced in a small number of individuals, which
means that SNPs with rare alleles are less likely to be dis-
covered [22]. There are many measures for Ancestry
Informative Markers (AIM), such as absolute allele fre-
quency difference (δ), expected heterozygosity, F statistics
(FST), informativeness for assignment (In) and informa-
tiveness for ancestry coefficients (Ia) [20]. We did not use
any AIM estimates for SNP selection in this study because
we thought that the AIM estimates from one data set may
not be safely applied to other data sets if the reference
sample size was not large enough. Despite our SNP ascer-
tainment procedures, we obtained very good results for
population structure detection using HapMap and Perle-
gen data sets. The implication of this work is that it is pos-
sible to tackle population structure issues in genome-wide

association studies with a large number of markers.
Instead of a special marker selection procedure, the AW-
clust algorithm uses a large number of random genome-
wide SNPs to ensure a sufficient number of informative
makers for inferences. Subpopulations can be identified,
and then association tests are applied to each homogene-
ous group of individuals.

Plots of the gap statisticFigure 7
Plots of the gap statistic. The correct number of popula-
tions, K, was estimated via the gap statistic. In the left panel, 
the blue and red curves are the estimated expectation of log 
(Wk) and the observed log (Wk), respectively. The right panel 
is the gap statistic plot. The number of populations is set to 
range from 1 to 6. (a) and (b) correspond to the HapMap 
data, using 1,000 random genome-wide SNP loci. (c) and (d) 
correspond to the CHB and JPT data, using 30,000 random 
genome-wide SNP loci. (e) and (f) correspond to the Perle-
gen data, using 1,000 random genome-wide SNP loci. The 
inferred optimal K is the elbow point in the left panel, which 
is indicated by the maximizing gap on the right panel. It is 
clear that the gap statistic gives the optimal number of popu-
lations in each scenario as 3, 2, and 3, respectively.
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horizontal lines. Outliers are marked by dots. Red diamonds 
are the means of the classification error rate for the sample 
for each number of SNP loci tested and red arrows are mean 
± standard deviation.

50 100 200 300 400 500 600 700 800 900 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

number of SNPs

F
ra

ct
io

n 
of

 s
am

pl
e

AA

50 100 200 300 400 500 600 700 800 900 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

number of SNPs

F
ra

ct
io

n 
of

 s
am

pl
e

EA

50 100 200 300 400 500 600 700 800 900 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

number of SNPs

F
ra

ct
io

n 
of

 s
am

pl
e

HC

50 100 200 300 400 500 600 700 800 900 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

number of SNPs

C
la

ss
ifi

ca
tio

n 
E

rr
or

 R
at

e

Whole Sample
Page 7 of 11
(page number not for citation purposes)



BMC Genetics 2007, 8:34 http://www.biomedcentral.com/1471-2156/8/34
There are two key parts in the implementation of the AW-
clust algorithm. The first part is the ASD distance matrix
between all pairs of individuals. This distance was chosen
because it can be shown using Balding and Nichols's DNA
profile match probability theory [23] that the expected
ASD between individuals from different subpopulations
is always greater than that between individuals from the
same subpopulation using SNP markers [24]. Thus, the
within and between population distances may hardly
overlap when many genome-wide random SNP loci are
used. Therefore it is possible to differentiate populations
from the half-matrix of pairwise distances without explic-
itly estimating allele frequencies for each sub-population.
It is through the accumulated effect of many SNP loci that
population structure can be identified. The second part in
AW-clust is Ward's minimum variance algorithm, becuase
inference of population structure based on ASD is likely to
be reduced to contrasting group means and minimizing
within-group variance of ASD. Ward's minimum variance
appraoch is particularly suited to our problem, where the
correct number of subpopulations is not known in
advance, and we need to minimize the increase in the
within-group ASD variance each time an individual is
added to a cluster.

The advantage of our algorithm is that, relative to model-
based methods, it is fast. Therefore, it can be applied to
data sets with large numbers of individuals and SNPs,
such as occur in genome-wide association studies. It took
less than one minute on a desktop computer (P4 3.0G
CPU with 1 GB memory) to separate CHB and JPT using
20K random SNP loci. Kruglyak (1999) estimated that
approximately 500,000 uniformly distributed markers are
required for genome-wide association studies. It would be
valuable if we can make full use of these SNP markers in
association studies for population structure protection.
The AW-clust algorithm provides a possible solution to
this scenerio. The AW-clust algorithm does not assume
Hardy-Weinberg equilibrium or linkage equilibrium in
the sample population individuals, no special marker
selection criterion is required, and the algorithm is robust
to relatively small sample sizes.

One drawback with distance-based methods is that the
distance measure and the clustering algorithm are some-
what arbitrary. If another definition of distance or cluster-
ing method are used, the clustering results may change,
which may be a reason, in addition to relatively small
number of SNP loci used, why some authors did not see a
separation of Chinese and Japanese sample individuals in
previous studies [9,10]. A problem with Ward's minimum
variance method is that it may or may not give the mini-
mum possible error sum of squres over all possible sets of
K clusters from the data units. However, Ward's solution
is generally very good even if it is not optimal on this cri-

terion [25]. We found that the classical multidimensional
scaling (MDS) algorithm [26] can also be used to deter-
mine the ethnic clusters in the second stage of the AW-
clust algorithm, which can be implemented in the stand-
ard statistical software package R using the cmdscale ()
function. Distance-based methods are criticized for being
more suited to data exploration than to statistical infer-
ence [11]. However, we believe AW-clust could be effec-
tively used as a first step in statistical inference. After using
AW-clust to identify the major clusters, we can use Baye-
sian methods to calculate the posterior probabilities for
individuals belonging to each different cluster. A general
challenge for population structure analysis is to derive the
correct number of subpopulations, K, and it is no different
for the AW-clust algorithm. We view K as a variable
instead of a fixed number and let researchers determine
the most appropriate level of separation. For example,
CHB and JPT are often grouped together for data analysis
[17,27]. However, these two samples can be separated and
fall in different clusters using AW-clust, as shown in the
results. It is subjective whether we would like to treat them
as one group or two groups and K should be defined to fit
the researcher's interests and as the data permits. One pos-
sible alternative to the subjective definition of K, is to
define it using the gap statistic. It should be noted, how-
ever, estimating K is still more art than science, and
depends on many factors, such as population distance,
number of individuals in each population, number of
markers, random replicates and the method used.

It is easy to separate genetically distant ethnic groups, such
as CEU (60), YRI (60) and CHB (45) + JPT (44) in the
HapMap data, AA (23), EA (24) and HC (24) in the Perle-
gen data (sample size is in parenthesis). Both STRUC-
TURE (version 2.1) and the AW-clust algorithm gave very
good classification in these situations using several hun-
dred of random SNP loci. But the burn-in period and
number of iterations in STRUCTURE may not be easily
decided. Different authors used different settings [8,11-
13,20,21,28]. In our tests, it seems that these settings
depend on the sample size, the number of loci, and the
genetic distances among populations in order to get the
correct number of populations, K. STRUCTURE easily
found the correct K = 3 with 5,000 burn-in followed by
1,000 iterations when we tested it on CEU (60), YRI (60)
and CHB (45) + JPT (44) using 200 random SNP loci.
However, when we reduced the CHB sample size to 10
(CEU (60), YRI (60) and CHB (10)), we needed to set
10,000 burn-in and 10,000 iterations for STRUCTURE in
order to get the correct K using 200 random SNP loci.
Another challenging situation for STRUCTURE is fine-
scale population structure detection, such as that between
Chinese and Japanese. STRUCTURE assumes that marker
loci are in linkage equilibrium within subpopulations
[11], which theoretically puts a restriction on the number
Page 8 of 11
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of SNP loci that we can use from the human genome data.
Even when we ignored this assumption and used 10,000
random SNPs in STRUCTURE, it did not separate CHB
(60), YRI (60), CHB (45) and JPT (44) simultaneously
since CHB and JPT were predicted to be in one cluster.
This contrasts with the AW-clust algorithm, which sepa-
rated CHB and JPT into two different clusters. When we
chose to run STRUCTURE on the pooled CHB (45) and
JPT (44) using 5,000 random SNP loci with a 5,000 burn-
in period followed by 1,000 iterations, STRUCTURE iden-
tified two major clusters from the posterior probabilities
of K. But when we reduced the sample size for JPT from 44
to 20, STRUCTURE failed to identify the correct K, even
with 10,000 iterations after a burn-in period of 10,000
were used. The AW-clust identified two major clusters for
CHB and JPT in the above situations. Neither of the two
methods worked well when we reduced the sample size
for JPT from 44 to 10 individuals using 5,000 random
SNP loci. However, AW-clust created two discrete clusters
for CHB (45) and JPT (10) when we increased the number
of SNP loci to 20,000. STRUCTURE may or may not find
the correct number of clusters, K, in the fine scale popula-
tion structure situations using random SNP loci especially
when a population has a relatively small sample size, such
as 5 or 10 individuals, in addition to the considerable
computing time consumed. If accurate AIMs are available,
a likelihood approach should work well when predicting
an individual's ethnicity [29].

STRUCTURE usually requires multiple runs to check the
convergence of MCMC (STRUCTURE manual) which
requires substantial computing time when a large number
of individuals and SNP loci are used. The admixture pro-
portions for each individual, Q, is considered an advan-
tage of STRUCTURE. However, in our test on the Perlgen
data set (AA is an admixture population), the inferred

ancestry of individuals, , may be sensitive to the

number of SNP loci and sample sizes used. For example,
we ran STRUCTURE with 50,000 burn-in followed by
50,000 iterations on AA(23), EA(24) and HC(24) using
5,000 random SNP loci. All EA individuals were predicted
to have ~10% membership with HC, while most of the
predicted HC membership in EA individuals went away
when we used only 1,000 random SNP loci. With 50,000
burn-in and 50,000 iterations, nearly half of the AA indi-
viduals were predicted to have some EA membership, the
majority of the EA individuals were predicted nearly pure
EA membership, and most of the HC individuals were
predicted nearly pure HC membership for the data
AA(23), EA(24) and HC(24) using 1000 random SNP
loci. Most of the AA individuals' EA membership either
disappeared or was predicted to be much smaller when we

reduced the sample size of AA from 23 to 5 and kept
EA(24) and HC(24) using 1,000 random SNP loci. But
when the sample size setting is AA(23), EA(5) and
HC(24), EA individuals showed ~20% membership with
HC. The apparent advantage of the AW-clust algorithm
over STRUCTURE is for fine scale population structure
detection with small sample sizes since a large number of
SNP loci can be used and a relatively short computing
time is required. The correct number of populations may
be easily identified from the major clusters in the hierar-
chical plot rather than through multiple runs of rough
estimation from MCMC posterior probabilities of K,
which depend on many factors, such as the length of
burn-in, iterations, convergence, and number of popula-
tions in the sample.

Conclusion
In summary, the AW-clust algorithm provides efficient
calculation and visually appealing results. It can produce
highly accurate clustering and assign individuals correctly
to populations. This algorithm successfully differentiated
the CEU, YRI, and CHB+JPT sample individuals in the
HapMap data set. It is also robust to the admixed popula-
tion AA in the Perlegen data set, which covers AA, EA and
HC sample individuals. Moreover, it can detect fine-scale
population structure as subtle as that between CHB and
JPT. We anticipate that other closely related populations
can also be separated by similar approaches. Our method
combined with SNP markers has considerable power in
population structure analysis and it is not necessary to
estimate allele frequencies in order to differentiate popu-
lations.

Methods
Data
SNP data were drawn from the HapMap project Phase I
and the Perlegen SNP data sets. In the HapMap Phase I
SNP data, about 1.1 million SNPs were genotyped
genome-wide from 269 individuals from four ethnic pop-
ulations: 90 individuals (30 trios) from Yoruba in Ibadan,
Nigeria (YRI), 90 individuals (30 trios) from CEPH in
Utah residents with ancestry from northern and western
Europe (CEU), 45 unrelated Han Chinese from Beijing,
China (CHB), and 44 Japanese from Tokyo, Japan (JPT),
among which there are 209 unrelated individuals [17,30].
The Perlegen SNP data set is denser and it contains about
1.6 million SNPs in 71 unrelated individuals from three
ancestry populations: 23 African Americans (AA), 24
European Americans (EA) and 24 Han Chinese (HC)
from the Los Angeles area [18]. These two large SNP data
sets offer high quality and rich density SNP genotypes for
the population structure analysis of these ethnic groups.
In this study, SNP loci were selected by random sampling

Q̂
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from 22 autosomal chromosomes and only unrelated
individuals were used.

AW-clust algorithm
The AW-clust (Allele sharing distance and Ward's mini-
mum variance hierarchical clustering) method consists of
two stages. In the first stage, a distance matrix between all
pairs of individuals is constructed. The distance between
individuals i and j was defined as

where

and L is the number of SNP loci used. This, and similar
pair-wise distance measures were used by Bowcock et al.
[6], Mountain and Cavalli-Sforza [7] and Nakamura et al.
[15].

The second stage uses hierarchical clustering to determine
ethnic categories. We inferred clusters of individuals from
the distance matrix according to Ward's minimum vari-
ance algorithm [31,32]. Here we briefly review the algo-
rithm. In the initial step, each cluster contains one
individual. At each step, the algorithm merges the two
groups that will result in the smallest increase in the value
of within-cluster variance. The pair is then joined and the
number of clusters reduced by one. The clustering process
continues until one cluster contains all individuals. There-
fore, the within-cluster variance takes the minimal
increase at each fusion. The cluster variance increases non-
linearly as the clustering process builds up [33], which
clearly indicates where groups separate from each other.
In this paper, Ward's minimum variance algorithm was
implemented with the standard statistical software, R,
using the function hclust () [34].

Choice and validation of K
We regard the correct number of populations, K, as a var-
iable instead of a fixed number that depends on the anal-
ysis rather than being an intrinsic biological variable. It
depends on the level of population structure that we aim
to detect and the number of SNP loci used. For example,
we may not be able to separate the CHB and JPT individ-
uals with a small number of random SNP loci but with
more markers these two populations are differentiable.
The K in this paper is identified from the number of major
clusters in the hierarchical cluster plot.

Once we determined number of SNP loci needed to differ-
entiate populations, we then confirmed the correct

number of populations, K, using the gap statistic [16]. If K
ranges from 1 to k, the gap statistic selects the optimal k
such that log (Wk), where Wk is the pooled within-cluster
sum of squares, is farthest below its null reference distri-
bution curve. The gap statistic is defined as Gap (k) = E*
{log (Wk)} - log (Wk), where E* denotes the expectation
from the null reference distribution, in which a uniform
distribution was used.

Clustering quality
A sample was considered correctly assigned if the cluster
with the major fraction of ancestry was the same as the
ethnic group to which that individual was known to
belong [21]. The clustering quality with a given number of
SNP loci for each group was measured by Fraction Of
Sample (FOS), which is defined as the ratio of the number
of individuals of the major group in the cluster (known
origin) over all the individuals assigned to the cluster
(predicted origin) [10]. We also calculated the Classifica-
tion Error Rate (CER) for the pooled sample as the pro-
portion of incorrectly assigned individuals in the whole
data set. The accuracy of assignment for the pooled sam-
ple is defined as 1-CER. Random variation due to SNP
sampling was examined by a re-sampling method. SNPs
were randomly chosen without replacement from all the
SNPs used to re-run the analysis. In each case 100 repli-
cates were performed.

Simulation study
To evaluate the performance of the clustering algorithm in
situations where the classifications are known, we simu-
lated SNP data using the standard coalescent approach
[35]. We considered samples of n = 50 individuals drawn
from two random mating populations, each of size N =
10, 000, that had split from a single ancestral population
at t generations in the past. The mutation rate at each sim-
ulated locus was assumed to be negligible. Given the SNP
mutation rate is about 10-8 per locus per generation [36],
this assumption is likely to be valid. Genotypes for n indi-
viduals from each population were generated by random
pairing of 2n alleles. We retained only those loci for which
polymorphisms remained in the two populations to the
current sampling time, t = 0.

We estimated the pair-wise distance between individuals
from the set of genotypes for the 2n simulated individuals.
Then we used the Ward's minium variance method to
construct a tree from these distances. The quality of sepa-
ration was evaluated by CER for the 2n individuals. For
each set of parameters, we performed 100 simulations.
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