29 research outputs found

    Capillary trapping for geologic carbon dioxide storage - From pore scale physics to field scale implications

    Get PDF
    AbstractA significant amount of theoretical, numerical and observational work has been published focused on various aspects of capillary trapping in CO2 storage since the IPCC Special Report on Carbon Dioxide Capture and Storage (2005). This research has placed capillary trapping in a central role in nearly every aspect of the geologic storage of CO2. Capillary, or residual, trapping – where CO2 is rendered immobile in the pore space as disconnected ganglia, surrounded by brine in a storage aquifer – is controlled by fluid and interfacial physics at the size scale of rock pores. These processes have been observed at the pore scale in situ using X-ray microtomography at reservoir conditions. A large database of conventional centimetre core scale observations for flow modelling are now available for a range of rock types and reservoir conditions. These along with the pore scale observations confirm that trapped saturations will be at least 10% and more typically 30% of the pore volume of the rock, stable against subsequent displacement by brine and characteristic of water-wet systems. Capillary trapping is pervasive over the extent of a migrating CO2 plume and both theoretical and numerical investigations have demonstrated the first order impacts of capillary trapping on plume migration, immobilisation and CO2 storage security. Engineering strategies to maximise capillary trapping have been proposed that make use of injection schemes that maximise sweep or enhance imbibition. National assessments of CO2 storage capacity now incorporate modelling of residual trapping where it can account for up to 95% of the storage resource. Field scale observations of capillary trapping have confirmed the formation and stability of residually trapped CO2 at masses up to 10,000tons and over time scales of years. Significant outstanding uncertainties include the impact of heterogeneity on capillary immobilisation and capillary trapping in mixed-wet systems. Overall capillary trapping is well constrained by laboratory and field scale observations, effectively modelled in theoretical and numerical models and significantly enhances storage integrity, both increasing storage capacity and limiting the rate and extent of plume migration

    A new fusion approach for content based image retrieval with color histogram and local directional pattern

    No full text
    In this paper, we propose a novel color image retrieval approach by using an effective fusion of two types of histograms extracted from color and local directional pattern (LDP), respectively. First, we describe the extraction process of color histogram and LDP. Secondly we present these two features and then develop an effective fusion procedure including feature normalization and a new similarity metric. Thirdly, this new approach is validated after extensive comparisons with several existing state of the art approaches on two benchmark datasets including the Wang’s dataset and large size of the Corel-10000 dataset. Finally, a friendly interface for this proposed retrieval system is designed and used to show some retrieval results
    corecore