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Light Source Detection for Digital Images in
Noisy Scenes: A Neural Network Approach

David A. Elizondo, Shang-Ming Zhou, and Charalambos Chrysostomou

Abstract To produce realistic synthetic images, it is important to shade objects
based on real illumination conditions of a scene. Estimating the direction of the light
source of the scene is a key factor to achieve this. Properly estimating this source
under noisy conditions is very challenging and it is a subject of intense research.
Computational intelligence techniques offer promising way of tacking this prob-
lem. This paper presents a novel neural network based approach to recovering light
source direction in relation to the viewpoint direction of a graphical image in noisy
environments. The estimated light source direction can be used for the generation of
3D images from 2D ones. Experiments are performed using both synthetic and real
images in noisy scenes. Four synthetic surfaces where generated with varying light
source directions for a total of 12 images. Three real images were also used with
varying degrees of noise. The experimental results show that the proposed approach
is robust and provides a good level of accuracy.

1 Introduction

In computer vision, estimating illuminant directions and/or intensities is an impor-
tant topic and has achieved many applications in domains such as shape from shad-
ing [1, 2, 3], augmented reality [4], and image approximation [5]. Detecting light
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sources offers a way of automatically locating the precise positions of light sources
in a photograph. It can be used to render synthetic objects and conduct the seam-
less insertion of artificial or real objects in the scene by illuminating them under the
same light conditions. Automatic localisation of light source effectively accelerate
and facilitate software development, such as in computer games. Shape from shad-
ing is used to recover the 3D shape of a surface from a gradual variation of shading
in the image, while information about the light distribution around an object of in-
terest can be used to reduce the ambiguities concerning the 3D shape of the same
object or of surrounding objects. This is why it is important to obtain an appropriate
photometric model of real objects. To this end, one has to investigate the surface
reflectance properties of the objects and the properties of illumination particularly
their directions. One commonly used image formation model for this purpose is the
Lambertian model. In this model, the gray level of the image at each pixel depends
on the light source direction and the surface normal. Given a gray level image, the
aim of shape from shading is to recover the light source and the surface shape at
each pixel in the image.

A review of the state-of-the-art on the topic of estimation of surface reflectance
properties and lighting allows to distinguish two main categories of techniques used
in this area: (1) approaches to detection of multiple light sources [6, 7, 8, 9, 10, 11,
12, 13, 14]; (2) approaches to detection of single light source [16, 17, 18, 20, 21].
In this paper, the focus is on the latter case associated with detection of light source
direction from a single view, i.e., recovery of the surface reflectance, lighting, or
texture, given an image or multiple images taken from a single view. If the light
sources are visible in the image of the study, the problem of estimating the illumina-
tion distribution may not be too challenging. For example, some techniques require
a specific object to be part of the scene [8] or a mirror-like object to be inserted in
the scene [15] for estimating the illumination distribution, but for real-life scenar-
ios their applicability is limited as light sources are often not visible in the scenes
due to various reasons, such as noisy environments. With unknown light sources
in the scenes, or light sources hidden in noisy scenes, it is often not clear what is
depicted in the scene. In other words, it would be very difficult to have information
about the geometry, surface texture and other properties of the visible objects. In
these scenarios, finding the exact locations and intensities of the light sources can
be tremendously challenging.

In this paper, we propose and evaluate a novel approach to detecting light sources
from noisy scenes using a spherical Lambertian model. We define some scene fea-
tures related to light sources and use neural network model to identify the precise
locations of the light sources. Some real and synthetic images are used to evaluate
the accurate performance of the proposed approach.

This paper is organised as follows. Section 2 reviews the existing research ef-
forts on detecting light sources in various conditions. Section 3 defines the scene
features used for light source detection and present the neural network model The
experimental results are provided in Section 4 and Section 5 concludes this paper
with some discussions.
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2 Related Work

Because there are no reliable methods that can detect light sources in any arbi-
trary image, it is important to understand the strengths of the different approaches.
Pentland[17] in the first place dealt with the problem of estimating a light source that
is not directly visible in an image object. He used a statistical approach to recover
the direction of a single light source for arbitrary scenes without assuming that an
object with known geometry is visible, but assuming a uniform distribution of the
directions of the surface normals was used based on the Lambertian reflectance
model. However, this statistical approach is only applicable to the surface normals
of the objects in the scene that are isotropically distributed, for example, the spher-
ical objects and complex scenes with many randomly distributed objects, it may
not be suited for images of flat or cylindrical surfaces. Sharing Pentland’s spherical
assumption, Lee and Rosenfeld proposed a light source detection approach when
developing shape from shaping techniques[18]. Lee and Rosenfeld computed the
slant and the tilt of the surface in the light source coordinate system using only the
first derivative of the intensity in a clearer way, they indicated that the regression
model using derivatives in many directions is not necessary. The major part in the
implementation of Lee and Rosenfeld’s algorithm is the rotation of the image from
the viewer coordinates to the light source coordinates, and the computation of the
intensity gradient in the light source coordinates. There are no parameters to be
determined in this algorithm, but like the Pentland’s method, the local spherical as-
sumption of the surface is the limits of the Lee and Rosenfeld’s algorithm. Instead of
using Pentland’s equations in the differential forms for slant estimation, Chojnacki
etal [19] derived a slant estimator based on the integral form. Compared with the
Pentland’s method, in the integral form the direction of differentiation was clearly
stated. Like Lee and Rosenfeld [18], Chojnacki et al [19] also noted that the partial
derivatives of the image intensity in arbitrary directions is always a linear combi-
nation of the derivatives in the horizontal and vertical directions. Thus, the tilt can
be determined without the need to use the regression model proposed by Pentland
[17]. However, an assumption was made both in the Pentland’s method [17] and the
Chojnacki method [19] about slant estimation, which is that the slant estimator is in-
dependent of the choice for direction s. One arising issue is that there are no details
provided about how to choose the direction s in the implementation, eventhough it
was noticed that the variations of s had an influence on the detection results. By
replacing the smoothness constraint with an intensity gradient constraint which re-
quires the reconstructed surface gradient to be closer to the intensity gradient of the
input image in both x and y directions, Zheng and Chellappa used the shading infor-
mation along image tours to reconstruct the shape, illuminant direction, and texture
from a single image of a Lambertian surface[20]. In their proposed scheme, Zheng
and Chellappa simplified the Euler equation by taking the first order Taylor series
of the reflectance map and representing the depth, the gradient and their deriva-
tives in discrete forms. In this scheme, a new algorithm was derived to update the
depth and the gradient quickly and simultaneously in a hierarchical structure. Sato
et al proposed a method of estimating the illumination distribution of a real scene
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from the image brightness observed on a real object surface in that scene[22, 23],
in which an iterative optimization framework was used to simultaneously estimate
both the illumination distribution of the scene and the reflectance properties of the
surface without assuming any particular reflectance properties of the surface inside
the shadows. Hara et al [24] proposed two types of methods for recovering the sur-
face reflectance property of an object and the position of a light source from a single
view without the distant illumination assumption, so they allowed the image syn-
thesis of the target object to be under arbitrary light source positions.

3 Neural Network Approach to Estimating Light Source
Direction in Noisy Scenes

Previous work [25], has shown that neural networks can effectively be used to re-
construct 3D scenes from noisy images. In the previous work [25], as well as in
this paper, the estimation of illumination direction and albedo from a noisy scene is
conducted under the following three assumptions:

• All illumination originates from one light source in the scene;
• All objects have Lambertian reflectance surfaces;
• The normal surface of the objects in the scene complies with normal distribution.

The first two assumptions are made in many of the existing approaches. Although
these assumptions are seemingly simple and limit the applications, the current re-
search indicates that estimating illumination direction and properties based on these
assumptions is a difficult task. In this section a neural network based approach is
presented to estimate the light source direction from image in noisy scene and re-
duce the error produced by the noise, in which scene features on the noisy image
are used as inputs to the neural network.

3.1 Scene Features of Noisy Images

Given a noisy image, the following features are extracted by a mathematical formula
[26, 27]. These features will work as the inputs to the neural network to recover the
original slant and tilt of the light source.

The first feature of a noisy image is the average of the image brightness:

E1 =
∑y ∑x Rx,y

T
(1)

where Rx,y corresponds to the image intensity value at pixel (x,y) and T denotes the
total number of pixels in the image.

The second feature of a noisy image is the average of the squared image bright-
ness:
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E2 =
∑y ∑x(Rx,y

2)

T
(2)

The third and fourth features of noisy images are the averages of the horizontal
and vertical components of the direction of the noisy image spatial gradient sepa-
rately:

Ex =
∑y ∑x(Rx,y −Rx,y−1)

T
(3)

Ey =
∑y ∑x(Rx,y −Rx−1,y)

T
(4)

The fifth and sixth features are the contaminated slant (CS) and tilt (CT) angles
extracted from the noisy image.

Fig. 1 Slant θ and Tilt Angle φ

Given the Lambertian reflectance model whose surface reflects light in all direc-
tions, the slant angle θ [26, 27] shown in Figure 1 is the angle between the camera
axis and the light source direction, while the tilt angle φ [26, 27] is the angle be-
tween the x-axis and the projection light in the same direction. The CT is computed
by:

Ct = tan−1
(

Ex

Ey

)
(5)

while the CS is given by:

Cs =

{
1 i f α ≥ 1

cos−1
(

4E1
g

)
i f α < 1 (6)

where
g =

√
6π2E2 −48E2

1 (7)
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and
α =

4E1

g
(8)

3.2 Structure of The Proposed Neural Network

Given a noisy scene, the information available is limited to the features extracted
in the above subsection. The task is to recover the original slant angle and tilt an-
gle of light source and to calculate the light source direction. It is known in the
signal processing community that it is rather challenging to recover the original sig-
nal from data highly contaminated by noise without prior knowledge. So, a neural
neural network model is proposed to fulfil this task. The structure of the proposed
neural network is shown in the Figure 2. This corresponds to a 3 layer feed-forward
network with six input neurons and two output neurons. The six input neurons are
merely “fan-out” units accepting the six features extracted above from noisy images.
No processing takes place in these units. The sigmoid activation function is used in
this feed-forward network with one hidden layer of units. The net input to the kth
units in hidden layer is given by:

neth
k = ∑wh

ikxi +bh
k (9)

where wh
ik are the activation weights of the kth units in the hidden layer to the ith

units in the input layer and bh
k are the activation bias of the kth units in the hid-

den layer. The output oh
k of the kth units in hidden layer is obtained by a sigmoid

function, as given below:

oh
k =

1
1+ exp

(
−neth

k

) (10)

The two output neurons represent the recovered slant and tilt angles of the light
source.

Slant output neuron:

nets = sum(ws
k ∗oh

k +bs)

os = f (os) = nets(identity f unction)

Tilt output neuron:

nett = sum(wt
k ∗ot

k +bt)

ot = f (ot) = nett(identity f unction)
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Fig. 2 Architecture of the multilayer feedford NN for estimating Light Source Direction

The most important issue is how to effectively train the network from a noisy
scene for recover the original slant and tilt of light source. To this end, we need to
create the training data set. Given N initial images from scenes that are less contam-
inated by noise , their corresponding slant si and tilt angles ti of the light source are
calculated in a similar way as did by (6) and (5) separately with y(i) = (s(i), t(i))T .
Gaussian noises are added to these N images, and six above scene features are ex-
tracted from the noise added images with x(i) = (E i

1,E
i
2,E

i
x,E

i
y,Cs(i),Ct(i))T . The

data set
{(

x(i),y(i)
)}N

i=1
is then used to train the neural network shown in Figure 2

by the back-propagation algorithm. The back-propagation algorithm works as fol-
lows [28]. At the output layer, the output vector is compared with the desired output.
The error is calculated from the delta rule and is propagated back through the net-
work to adjust the weights with the idea of minimising the difference between the
network outputs and the desired outputs. Such networks can learn arbitrary associ-
ations by using differentiable activation functions (10). A theoretical foundation of
back-propagation can be found in [29] and [30].

The rationale of the neural network’s merit in reducing noise lies in that the
output of every neuron in the hidden layer and output layer is obtained by having
to perform the weighted averaging of inputs from the previous layer like the ones
shown in (9), which acts as a low-pass filter. So, the noise from the input layer will
be cancelled much through the connections between the input layer and the hidden
layer, and reduced further through the connections between the hidden layer and the
output layer.

The neural network was trained multiple times under different starting conditions
in order to avoid any local minimums. Furthermore, In order to find the best number
of neurons for the hidden layer, pruning method was used. The neural network will
start with a high number of neurons, and decrease the number of neurons until the
optimal number is found.
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3.3 Estimation of Light Source Direction

Given a noisy image, the recovered slant s and tilt t can be obtained by applying the
trained neural network to the features. Then the light source direction in (Sx,Sy,Sz)
can be estimated as follows [26, 27]:

Sx = cos(t) · cos(s) (11)

Sy = sin(t) · sin(s) (12)

Sz = cos(s) (13)

4 Experimental Results

In this section, the proposed model is evaluated by estimating the light source di-
rections of some images in noisy scenes. However, to find a good set of images to
train and test the neural network models is very difficult, because the ideal image
has to satisfy the previous assumption set for the neural network based model, for
example all images must reflect a Lambertian reflectance model surface and have
constant albedo values. In our experiments, the coordinate Sz is always set to be 1,
which corresponds to the fact that all the images have infinite point source illumina-
tion. So, we only focus on the construction of a neural network model based on the
proposed scheme to estimate (Sx,Sy) off the noisy scenes. In the next subsection,
some experimental images are described. The light source directions for all is given
in table 1.

4.1 Experimental Images

4.1.1 Synthetic images

The synthetic images described in [2, 32] were created by using the original depth
maps from range data obtained from a range laser finder (see [2]). To create realistic
synthetic images, the virtual objects have to be shaded consistently under the real
illumination condition of the scene. To this end, the forward discrete approximation
of depth is used to calculate the surface gradient. Shaded images are generated using
the Lambertian reflectance model with different light conditions and source direc-
tions of the same surface, which present an advantage of synthetic images over real
ones. It is known that real images usually do not perfectly meet the above assump-
tions of the reflectance model due to errors that can not be measured or corrected.

In this paper, four synthetic surfaces are generated, they are: Sphere, synthetic
Vase, Penny and Mozart. Figures 3.a, 4.a and 5.a show three different views of a
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synthetic sphere image as taken from [2]. These images correspond to the same sur-
face, from the same view point direction, but with different light source directions.
Their corresponding noisy images from the same view point with different light
source directions are independently shown in Figures 3.b, 4.b and 5.b.

Table 1 Original Light Source Directions

Image Light Source Direction
Sx Sy Sz

Sphere 1 0 0 1
Sphere 2 0.5 0.5 1
Sphere 3 -0.5 -0.5 1
Mozart 1 0 0 1
Mozart 2 1 0 1
Penny 1 0 0 1
Penny 2 1 0 1

Synthetic Vase 1 0 0 1
Synthetic Vase 2 1 0 1

Lenna 1.5 0.866 1
Pepper 0.767 0.642 1

Real Vase -0.939 1.867 1

(a) (b)

Fig. 3 Synthetic sphere 1 image (normal (a) and noisy (b))

The synthetic vase images displayed in Figures 6.a and 7.a were generated using
the equations suggested by Ascher and Carter [2, 31] as follows:

Z(x,y) =

√
f (y)2 − x2 (14)

where
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(a) (b)

Fig. 4 Synthetic sphere 2 image (normal (a) and noisy (b))

(a) (b)

Fig. 5 Synthetic sphere 3 image (normal (a) and noisy (b))

f (y) = 0.15−0.1y(6y+1)2(y−1)2(3y−2)
−0.5 ≤ x ≤ 0.5,and0 ≤ x ≤ 1 (15)

while the corresponding noisy images from the same view point with different light
directions are shown in Figures 6.b and 7.b separately.

The Penny images shown in Figures 8.a and 9.a have the light source directions
of (Sx,Sy,Sz) = (0,0,1) and (1,0,1) separately, while Figures 8.b and 9.b illustrate
their corresponding noisy images from the same view point.

The Mozart images illustrated in Figures 10.a and 11.a are generated with the
light source directions (Sx,Sy,Sz) = (0,0,1) and (1,0,1) separately, and the noisy
images from the same view point with different conditions are shown in Figures
10.b and 11.b.
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(a) (b)

Fig. 6 Synthetic Vase Image 1 (normal (a) and noisy (b))

(a) (b)

Fig. 7 Synthetic Vase Image 2 (normal (a) and noisy (b))

(a) (b)

Fig. 8 Real Penny Image 1 (normal (a) and noisy (b))
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(a) (b)

Fig. 9 Real Penny Image 2 (001 (a) and 101 (b))

(a) (b)

Fig. 10 Synthetic Mozart Image 1 (normal (a) and noisy (b))

(a) (b)

Fig. 11 Synthetic Mozart Image 2 (normal (a) and noisy (b))
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4.1.2 Real images

Three real images [2, 32] were also used for training and testing the neural network
model, they are: Lenna, Pepper and Real Vase as shown in Figures 12.a, 13.a and
14.a. The light source directions of these three surfaces are specified with the images
[2, 32]. Figures 12.b, 13.b and 14.b depicts the noisy real images.

(a) (b)

Fig. 12 Real Lenna Images (normal (a) and noisy (b))

(a) (b)

Fig. 13 Real Pepper Images (normal (a) and noisy (b))
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(a) (b)

Fig. 14 Real Vase Images (normal (a) and noisy (b))

4.2 Estimation of the Level of Performance of the Neural Network
Model

By constructing the neural network model as described in the previous sections,
seven synthetic images are going to be used for training. Table 2 shows the images
used for training as well as the light source direction.

For testing and validation purposes, five images are going to be used. Three of the
testing images used are real (Lenna, Pepper, Real Vase), and two are synthetic (Syn-
thetic Vase 1, Synthetic Vase 2). Table 3 shows a summary of the results obtained
in terms of the performance of the proposed neural network approach to estimating
light source directions from the images in noisy scenes. Overall, the neural network
model can achieve accurate estimation results on the noisy scenes both for synthetic
and real images. Only for one of the testing real images resulted in inaccurate light
source position. As the proposed method assumes that all objects have Lambertian
reflectance surfaces, in a real world scenario, a 3D scene may include specular high-
lights [33] or be a mixture of different reflectance surfaces [33].

Table 2 Images Used for Training the Neural Network. All Images Used for Training are Syn-
thetic.

Image Expected LSDs
Sphere 1 (0, 0)
Sphere 2 (0.5, 0.5)
Sphere 3 (-0.5, -0.5)
Mozart 1 (0, 0)
Mozart 2 (1, 0)
Penny 1 (0, 0)
Penny 2 (1,0)
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Table 3 Estimating light source directions (LSDs) for noisy scenes by the proposed scheme. The
type of image is either S for synthetic or R for real.

Image Type Expected LSDs Model Output LSDs
Lenna R (1.5, 0.866) (1.53, 0.896 )
Pepper R (0.767, 0.642) (0.7053,0.662)
Real Vase R (-0.939, 1.867)

(
2.28e−6,3.27e−5

)
Synthetic Vase 1 S (0, 0)

(
1.75e−7,4.15e−8

)
Synthetic Vase 2 S (1, 0)

(
0.749,2.6e−5

)

5 Conclusions and Future Research

In this paper, a neural network based approach has been presented to estimate the
light source directions from the images in noisy scenes, in which six scene features
were suggested to work as the inputs. Some synthetic and real images were used
to evaluate the proposed model, and the experimental results have shown that the
neural network model can produce accurate estimation results in most cases. Fur-
ther research needs to be performed for the proposed method to handle specular
highlights, surfaces with a mixture of different reflectance types and multiple light
sources. Our ultimate objective is to reconstruct 3D images from 2D ones in noisy
environments and apply to medical domains.
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