9 research outputs found

    Clinical implications of a possible role of vitamin D in multiple sclerosis

    Get PDF
    Hypovitaminosis D is currently one of the most studied environmental risk factors for multiple sclerosis (MS) and is potentially the most promising in terms of new clinical implications. These practical consequences, which could be applied to MS patients without further delay, constitute the main purpose of this review. Vitamin D is involved in a number of important general actions, which were not even suspected until quite recently. In particular, this vitamin could play an immunomodulatory role in the central nervous system. Many and varied arguments support a significant role for vitamin D in MS. In animal studies, vitamin D prevents and improves experimental autoimmune encephalomyelitis. Epidemiologically, latitude, past exposure to sun and the serum level of vitamin D influence the risk of MS, with, furthermore, significant links existing between these different factors. Clinically, most MS patients have low serum levels of vitamin D and are in a state of insufficiency or even deficiency compared to the international norm, which has been established on a metabolic basis. Large therapeutic trials using vitamin D are still lacking but the first results of phase I/II studies are promising. In the meantime, while awaiting the results of future therapeutic trials, it can no longer be ignored that many MS patients have a lack of vitamin D, which could be detected by a serum titration and corrected using an appropriate vitamin D supplementation in order to restore their serum level to within the normal range. From a purely medical point of view, vitamin D supplementation appears in this light to be unavoidable in order to improve the general state of these patients. Furthermore, it cannot currently be ruled out that this supplementation could also be neurologically beneficial

    Natural Selection Affects Multiple Aspects of Genetic Variation at Putatively Neutral Sites across the Human Genome

    Get PDF
    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations

    Patient empowerment in long-term conditions: development and preliminary testing of a new measure

    Get PDF
    BACKGROUND: Patient empowerment is viewed by policy makers and health care practitioners as a mechanism to help patients with long-term conditions better manage their health and achieve better outcomes. However, assessing the role of empowerment is dependent on effective measures of empowerment. Although many measures of empowerment exist, no measure has been developed specifically for patients with long-term conditions in the primary care setting. This study presents preliminary data on the development and validation of such a measure. METHODS: We conducted two empirical studies. Study one was an interview study to understand empowerment from the perspective of patients living with long-term conditions. Qualitative analysis identified dimensions of empowerment, and the qualitative data were used to generate items relating to these dimensions. Study two was a cross-sectional postal study involving patients with different types of long-term conditions recruited from general practices. The survey was conducted to test and validate our new measure of empowerment. Factor analysis and regression were performed to test scale structure, internal consistency and construct validity. RESULTS: Sixteen predominately elderly patients with different types of long-term conditions described empowerment in terms of 5 dimensions (identity, knowledge and understanding, personal control, personal decision-making, and enabling other patients). One hundred and ninety seven survey responses were received from mainly older white females, with relatively low levels of formal education, with the majority retired from paid work. Almost half of the sample reported cardiovascular, joint or diabetes long-term conditions. Factor analysis identified a three factor solution (positive attitude and sense of control, knowledge and confidence in decision making and enabling others), although the structure lacked clarity. A total empowerment score across all items showed acceptable levels of internal consistency and relationships with other measures were generally supportive of its construct validity. CONCLUSION: Initial analyses suggest that the new empowerment measure meets basic psychometric criteria. Reasons concerning the failure to confirm the hypothesized factor structure are discussed alongside further developments of the scale

    Cultural Niche Construction: An Introduction

    No full text
    Niche construction is the process whereby organisms, through their activities and choices, modify their own and each other’s niches. By transforming natural-selection pressures, niche construction generates feedback in evolution at various different levels. Niche-constructing species play important ecological roles by creating habitats and resources used by other species and thereby affecting the flow of energy and matter through ecosystems—a process often referred to as “ecosystem engineering.” An important emphasis of niche construction theory (NCT) is that acquired characters play an evolutionary role through transforming selective environments. This is particularly relevant to human evolution, where our species has engaged in extensive environmental modification through cultural practices. Humans can construct developmental environments that feed back to affect how individuals learn and develop and the diseases to which they are exposed. Here we provide an introduction to NCT and illustrate some of its more important implications for the human sciences.</p

    5 Quantitative Approaches to Phylogenetics

    No full text

    Sporotrichosis

    No full text
    corecore