75 research outputs found
Nonminimal Couplings in the Early Universe: Multifield Models of Inflation and the Latest Observations
Models of cosmic inflation suggest that our universe underwent an early phase
of accelerated expansion, driven by the dynamics of one or more scalar fields.
Inflationary models make specific, quantitative predictions for several
observable quantities, including particular patterns of temperature anistropies
in the cosmic microwave background radiation. Realistic models of high-energy
physics include many scalar fields at high energies. Moreover, we may expect
these fields to have nonminimal couplings to the spacetime curvature. Such
couplings are quite generic, arising as renormalization counterterms when
quantizing scalar fields in curved spacetime. In this chapter I review recent
research on a general class of multifield inflationary models with nonminimal
couplings. Models in this class exhibit a strong attractor behavior: across a
wide range of couplings and initial conditions, the fields evolve along a
single-field trajectory for most of inflation. Across large regions of phase
space and parameter space, therefore, models in this general class yield robust
predictions for observable quantities that fall squarely within the "sweet
spot" of recent observations.Comment: 17pp, 2 figs. References added to match the published version.
Published in {\it At the Frontier of Spacetime: Scalar-Tensor Theory, Bell's
Inequality, Mach's Principle, Exotic Smoothness}, ed. T. Asselmeyer-Maluga
(Springer, 2016), pp. 41-57, in honor of Carl Brans's 80th birthda
Mach's Principle and the Origin of Inertia
The current status of Mach's principle is discussed within the context of
general relativity. The inertial properties of a particle are determined by its
mass and spin, since these characterize the irreducible unitary representations
of the inhomogeneous Lorentz group. The origin of the inertia of mass and
intrinsic spin are discussed and the inertia of intrinsic spin is studied via
the coupling of intrinsic spin with rotation. The implications of spin-rotation
coupling and the possibility of history dependence and nonlocality in
relativistic physics are briefly mentioned.Comment: 14 pages. Dedicated to Carl Brans in honor of his 80th birthday. To
appear in the Brans Festschrift; v2: typo corrected, published in: At the
Frontier of Spacetime, edited by T. Asselmeyer-Maluga (Springer, 2016),
Chapter 10, pp. 177-18
Solution generating in scalar-tensor theories with a massless scalar field and stiff perfect fluid as a source
We present a method for generating solutions in some scalar-tensor theories
with a minimally coupled massless scalar field or irrotational stiff perfect
fluid as a source. The method is based on the group of symmetries of the
dilaton-matter sector in the Einstein frame. In the case of Barker's theory the
dilaton-matter sector possesses SU(2) group of symmetries. In the case of
Brans-Dicke and the theory with "conformal coupling", the dilaton- matter
sector has as a group of symmetries. We describe an explicit
algorithm for generating exact scalar-tensor solutions from solutions of
Einstein-minimally-coupled-scalar-field equations by employing the nonlinear
action of the symmetry group of the dilaton-matter sector. In the general case,
when the Einstein frame dilaton-matter sector may not possess nontrivial
symmetries we also present a solution generating technique which allows us to
construct exact scalar-tensor solutions starting with the solutions of
Einstein-minimally-coupled-scalar-field equations. As an illustration of the
general techniques, examples of explicit exact solutions are constructed. In
particular, we construct inhomogeneous cosmological scalar-tensor solutions
whose curvature invariants are everywhere regular in space-time. A
generalization of the method for scalar-tensor-Maxwell gravity is outlined.Comment: 10 pages,Revtex; v2 extended version, new parts added and some parts
rewritten, results presented more concisely, some simple examples of
homogeneous solutions replaced with new regular inhomogeneous solutions,
typos corrected, references and acknowledgements added, accepted for
publication in Phys.Rev.
Bell Correlations and the Common Future
Reichenbach's principle states that in a causal structure, correlations of
classical information can stem from a common cause in the common past or a
direct influence from one of the events in correlation to the other. The
difficulty of explaining Bell correlations through a mechanism in that spirit
can be read as questioning either the principle or even its basis: causality.
In the former case, the principle can be replaced by its quantum version,
accepting as a common cause an entangled state, leaving the phenomenon as
mysterious as ever on the classical level (on which, after all, it occurs). If,
more radically, the causal structure is questioned in principle, closed
space-time curves may become possible that, as is argued in the present note,
can give rise to non-local correlations if to-be-correlated pieces of classical
information meet in the common future --- which they need to if the correlation
is to be detected in the first place. The result is a view resembling Brassard
and Raymond-Robichaud's parallel-lives variant of Hermann's and Everett's
relative-state formalism, avoiding "multiple realities."Comment: 8 pages, 5 figure
Internal heating and thermal emission from old neutron stars: Constraints on dense-matter and gravitational physics
The equilibrium composition of neutron star matter is achieved through weak
interactions (direct and inverse beta decays), which proceed on relatively long
time scales. If the density of a matter element is perturbed, it will relax to
the new chemical equilibrium through non-equilibrium reactions, which produce
entropy that is partly released through neutrino emission, while a similar
fraction heats the matter and is eventually radiated as thermal photons. We
examined two possible mechanisms causing such density perturbations: 1) the
reduction in centrifugal force caused by spin-down (particularly in millisecond
pulsars), leading to "rotochemical heating", and 2) a hypothetical
time-variation of the gravitational constant, as predicted by some theories of
gravity and current cosmological models, leading to "gravitochemical heating".
If only slow weak interactions are allowed in the neutron star (modified Urca
reactions, with or without Cooper pairing), rotochemical heating can account
for the observed ultraviolet emission from the closest millisecond pulsar, PSR
J0437-4715, which also provides a constraint on |dG/dt| of the same order as
the best available in the literature.Comment: 6 pages, 7 figures. To appear in the proceedings of "Isolated Neutron
Stars: from the Interior to the Surface", a conference held in London in
April 2006 (special issue of Astrophysics and Space Science, edited by Dany
Page, Roberto Turolla, & Silvia Zane
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
- …