5 research outputs found

    Decrease of resistance to air flow with nasal strips as measured with the airflow perturbation device

    Get PDF
    BACKGROUND: Nasal strips are used by athletes, people who snore, and asthmatics to ease the burden of breathing. Although there are some published studies that demonstrate higher flow with nasal strips, none had directly measured the effect of the strips on nasal resistance using the airflow perturbation device (APD). The APD is an inexpensive instrument that can measure respiratory resistance based on changes in mouth pressure and rate of airflow. METHOD: This study tested forty-seven volunteers (14 men and 33 women), ranging in age from 17 to 51. Each volunteer was instructed to breathe normally into the APD using an oronasal mask with and without nasal strips. The APD measured respiratory resistance during inhalation, exhalation, and an average of the two. RESULTS: Results of a paired mean t-test comparing nasal strip against no nasal strip were statistically significant at the p = 0.05 level. The Breathe Right™ nasal dilator strips lowered nasal resistance by an average of 0.5 cm H(2)0/Lps from an average nasal resistance of 5.5 cm H(2)0/Lps. CONCLUSIONS: Nasal strips reduce nasal resistance when measured with the APD. The effect is equal during exhalation and during inhalation

    Experimental evaluation of three interaction channels for accessible digital musical instruments

    No full text
    Accessible Digital Musical instruments (ADMIs) dedicated to people with motor disabilities represent a relevant niche in accessibility research. The designer is often required to exploit unconventional physical interaction channels, different from hands and fingers. Although comprehensive evaluation methods for Digital Musical Instruments in general are found in literature, little has been done both in ADMIs evaluation and the analysis of suitable interaction channels from a Human-Computer Interaction perspective. In this work the performance of breath, gaze pointing and head movements is analyzed, in terms of movement speed and stability, through a simple experiment. These interaction channels could be exploited in the design of ADMIs dedicated to quadriplegic musicians. The proposed experiment has similarities with past Fitts Law evaluation tests. Results are discussed proposing possible mappings between channels and musical performance parameters. These results could also be useful to inform the design of different interface types
    corecore