1,048 research outputs found

    Intertwining Relations for the Deformed D1D5 CFT

    Full text link
    The Higgs branch of the D1D5 system flows in the infrared to a two-dimensional N=(4,4) SCFT. This system is believed to have an "orbifold point" in its moduli space where the SCFT is a free sigma model with target space the symmetric product of copies of four-tori; however, at the orbifold point gravity is strongly coupled and to reach the supergravity point one needs to turn on the four exactly marginal deformations corresponding to the blow-up modes of the orbifold SCFT. Recently, technology has been developed for studying these deformations and perturbing the D1D5 CFT off its orbifold point. We present a new method for computing the general effect of a single application of the deformation operators. The method takes the form of intertwining relations that map operators in the untwisted sector before application of the deformation operator to operators in the 2-twisted sector after the application of the deformation operator. This method is computationally more direct, and may be of theoretical interest. This line of inquiry should ultimately have relevance for black hole physics.Comment: latex, 23 pages, 3 figure

    Direct measurement of antiferromagnetic domain fluctuations

    Full text link
    Measurements of magnetic noise emanating from ferromagnets due to domain motion were first carried out nearly 100 years ago and have underpinned much science and technology. Antiferromagnets, which carry no net external magnetic dipole moment, yet have a periodic arrangement of the electron spins extending over macroscopic distances, should also display magnetic noise, but this must be sampled at spatial wavelengths of order several interatomic spacings, rather than the macroscopic scales characteristic of ferromagnets. Here we present the first direct measurement of the fluctuations in the nanometre-scale spin- (charge-) density wave superstructure associated with antiferromagnetism in elemental Chromium. The technique used is X-ray Photon Correlation Spectroscopy, where coherent x-ray diffraction produces a speckle pattern that serves as a "fingerprint" of a particular magnetic domain configuration. The temporal evolution of the patterns corresponds to domain walls advancing and retreating over micron distances. While the domain wall motion is thermally activated at temperatures above 100K, it is not so at lower temperatures, and indeed has a rate which saturates at a finite value - consistent with quantum fluctuations - on cooling below 40K. Our work is important because it provides an important new measurement tool for antiferromagnetic domain engineering as well as revealing a fundamental new fact about spin dynamics in the simplest antiferromagnet.Comment: 19 pages, 4 figure

    Neutron Scattering and Its Application to Strongly Correlated Systems

    Full text link
    Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an introduction to neutrons and neutron sources. The neutron scattering cross section is described and formulas are given for nuclear diffraction, phonon scattering, magnetic diffraction, and magnon scattering. As an experimental example, we describe measurements of antiferromagnetic order, spin dynamics, and their evolution in the La(2-x)Ba(x)CuO(4) family of high-temperature superconductors.Comment: 31 pages, chapter for "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancin

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic

    Duration of fever and serious bacterial infections in children: a systematic review

    Get PDF
    Background: Parents of febrile children frequently contact primary care. Longer duration of fever has been related to increased risk for serious bacterial infections (SBI). However, the evidence for this association remains controversial. We assessed the predictive value of duration of fever for SBI. Methods: Studies from MEDLINE, Embase and Cochrane databases (from January 1991 to December 2009) were retrieved. We included studies describing children aged 2 months to 6 years in countries with high Haemophilus influenzae type b vaccination coverage. Duration of fever had to be studied as a predictor for serious bacterial infections. Results: Seven studies assessed the association between duration of fever and serious bacterial infections; three of these found a relationship. Conclusion: The predictive value of duration of fever for identifying serious bacterial infections in children remains inconclusive. None of these seven studies was performed in primary care. Studies evaluating the duration of fever and its predictive value in children in primary care are required

    Towards the fast scrambling conjecture

    Get PDF
    Many proposed quantum mechanical models of black holes include highly nonlocal interactions. The time required for thermalization to occur in such models should reflect the relaxation times associated with classical black holes in general relativity. Moreover, the time required for a particularly strong form of thermalization to occur, sometimes known as scrambling, determines the time scale on which black holes should start to release information. It has been conjectured that black holes scramble in a time logarithmic in their entropy, and that no system in nature can scramble faster. In this article, we address the conjecture from two directions. First, we exhibit two examples of systems that do indeed scramble in logarithmic time: Brownian quantum circuits and the antiferromagnetic Ising model on a sparse random graph. Unfortunately, both fail to be truly ideal fast scramblers for reasons we discuss. Second, we use Lieb-Robinson techniques to prove a logarithmic lower bound on the scrambling time of systems with finite norm terms in their Hamiltonian. The bound holds in spite of any nonlocal structure in the Hamiltonian, which might permit every degree of freedom to interact directly with every other one.Comment: 34 pages. v2: typo correcte

    A randomized controlled trial of tai chi for long-term low back pain (TAI CHI): Study rationale, design, and methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low back pain persisting for longer than 3 months is a common and costly condition for which many current treatments have low-moderate success rates at best. Exercise is among the more successful treatments for this condition, however, the type and dosage of exercise that elicits the best results is not clearly defined. Tai chi is a gentle form of low intensity exercise that uses controlled movements in combination with relaxation techniques and is currently used as a safe form of exercise for people suffering from other chronic pain conditions such as arthritis. To date, there has been no scientific evaluation of tai chi as an intervention for people with back pain. Thus the aim of this study will be to examine the effects of a tai chi exercise program on pain and disability in people with long-term low back pain.</p> <p>Methods and design</p> <p>The study will recruit 160 healthy individuals from the community setting to be randomised to either a tai chi intervention group or a wait-list control group. Individuals in the tai chi group will attend 2 tai chi sessions (40 minutes)/week for 8 weeks followed by 1 tai chi session/week for 2 weeks. The wait-list control will continue their usual health care practices and have the opportunity to participate in the tai chi program once they have completed the follow-up assessments. The primary outcome will be bothersomeness of back symptoms measured with a 0–10 numerical rating scale. Secondary outcomes include, self-reports of pain-related disability, health-related quality of life and global perceived effect of treatment. Statistical analysis of primary and secondary outcomes will be based on the intention to treat principle. Linear mixed models will be used to test for the effect of treatment on outcome at 10 weeks follow up. This trial has received ethics approval from The University of Sydney Human Research Ethics Committee. HREC Approval No.10452</p> <p>Discussion</p> <p>This study will be the first trial in this area and the information on its effectiveness will allow patients, clinicians and treatment funders to make informed choices regarding this treatment.</p> <p>Trial Registration</p> <p>This trial has been registered with Australian New Zealand Clinical Trials Registry. <b>ACTRN12608000270314</b></p
    • …
    corecore