30 research outputs found

    Effect of polar amino acid incorporation on Fmoc-diphenylalanine-based tetrapeptides.

    Full text link
    Peptide hydrogels show great promise as extracellular matrix mimics due to their tuneable, fibrous nature. Through incorporation of polar cationic, polar anionic or polar neutral amino acids into the Fmoc-diphenylalanine motif, we show that electrostatic charge plays a key role in the properties of the subsequent gelators. Specifically, we show that an inverse relationship exists for biocompatibility in the solution state versus the gel state for cationic and anionic peptides. Finally, we use tethered bilayer lipid membrane (tBLM) experiments to suggest a likely mode of cytotoxicity for tetrapeptides which exhibit cytotoxicity in the solution state

    Description of Hymenolepis microstoma (Nottingham strain): a classical tapeworm model for research in the genomic era

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Hymenolepis microstoma </it>(Dujardin, 1845) Blanchard, 1891, the mouse bile duct tapeworm, is a rodent/beetle-hosted laboratory model that has been used in research and teaching since its domestication in the 1950s. Recent characterization of its genome has prompted us to describe the specific strain that underpins these data, anchoring its identity and bringing the 150+ year-old original description up-to-date.</p> <p>Results</p> <p>Morphometric and ultrastructural analyses were carried out on laboratory-reared specimens of the 'Nottingham' strain of <it>Hymenolepis microstoma </it>used for genome characterization. A contemporary description of the species is provided including detailed illustration of adult anatomy and elucidation of its taxonomy and the history of the specific laboratory isolate.</p> <p>Conclusions</p> <p>Our work acts to anchor the specific strain from which the <it>H. microstoma </it>genome has been characterized and provides an anatomical reference for researchers needing to employ a model tapeworm system that enables easy access to all stages of the life cycle. We review its classification, life history and development, and briefly discuss the genome and other model systems being employed at the beginning of a genomic era in cestodology.</p

    A new era for understanding amyloid structures and disease

    Get PDF
    The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention

    Integrating Archaeological Theory and Predictive Modeling: a Live Report from the Scene

    Full text link

    Platyhelminthes

    No full text
    A phylum of the invertebrates, commonly called the flatworms. They are bilaterally symmetrical, nonsegmented worms characterized by lack of coelom, anus, circulatory and respiratory systems, and exo- and endoskeletons. Many species are dorsoventrally flattened. They possess a protonephridial (osmoregulatory-excretory) system, a complicated hermaphroditic reproductive system, and a solid mesenchyme which fills the interior of the body. Some parasitic species, that is, some trematodes, have secondarily acquired a lymphatic system resembling a true circulatory system. Some species of trematodes, the schistosomes, have separate sexes. Traditionally, three classes were distinguished in the phylum: the Turbellaria, mainly free-living predacious worms; the Trematoda, or flukes, ecto- or endoparasites; and the Cestoda, or tapeworms, endoparasites found in the enteron (alimentary canal) of vertebrates, whose larvae are found in the tissues of invertebrates or vertebrates. However, recent cladistic analyses using morphology, including ultrastructure, as well as DNA analysis, have shown that the "Turbellaria" are an assemblage of taxa that are not monophyletic (that is, they are not a group containing all taxa with a common ancestor), and that the monogeneans, earlier included in the trematodes, do not belong to the trematodes. Most importantly, the Acoela do not belong to the Platyhelminthes, but are a very archaic group close to the base of the lower invertebrates; and all major groups of parasitic Platyhelminthes - that is, the Trematoda, Monogenea, and Cestoda - are monophyletic, constituting the Neodermata

    Phylogenetic relationships of the Gorgoderidae (Platyhelminthes: Trematoda), including the proposal of a new subfamily (Degeneriinae n. subfam.)

    No full text
    Phylogenetic analyses of a range of gorgoderid trematodes based on ITS2 and partial 28S rDNA data lead us to propose the Degeneriinae n. subfam. for the genus Degeneria in recognition of its phylogenetic isolation and distinctive morphology and biology. The current concepts of the subfamilies Anaporrhutinae and Gorgoderinae were supported. Within the Gorgoderinae, the large genus Phyllodistomum is shown to be paraphyletic relative to Pseudophyllodistomum and Xystretrum. Notably, the clade of marine Phyllodistomum does not form a clade with the other marine genus, Xystretrum. Distinct clades within the Gorgoderinae correspond variously to identity of first intermediate host, form of cercaria and their marine or freshwater habitat. We are not yet in a position to propose separate genera for these clades
    corecore