8 research outputs found

    Nonlinear Optics

    No full text
    This chapter provides a brief introduction into the basic nonlinear-optical phenomena and discusses some of the most significant recent advances and breakthroughs in nonlinear optics, as well as novel applications of nonlinear-optical processes and devices. Nonlinear optics is the area of optics that studies the interaction of light with matter in the regime where the response of the material system to the applied electromagnetic field is nonlinear in the amplitude of this field. At low light intensities, typical of non-laser sources, the properties of materials remain independent of the intensity of illumination. The superposition principle holds true in this regime, and light waves can pass through materials or be reflected from boundaries and interfaces without interacting with each other. Laser sources, on the other hand, can provide sufficiently high light intensities to modify the optical properties of materials. Light waves can then interact with each other, exchanging momentum and energy, and the superposition principle is no longer valid. This interaction of light waves can result in the generation of optical fields at new frequencies, including optical harmonics of incident radiation or sum- or difference-frequency signals

    Nonlinear Optics

    No full text

    Assessing written work by determining competence to achieve the module-specific learning outcomes.

    No full text
    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization

    Lasers and Coherent Light Sources

    No full text
    corecore