32 research outputs found

    Hypermethylated 14-3-3-σ and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis

    Get PDF
    Background: Numerous hypermethylated genes have been reported in breast cancer, and the silencing of these genes plays an important role in carcinogenesis, tumor progression and diagnosis. These hypermethylated promoters are very rarely found in normal breast. It has been suggested that aberrant hypermethylation may be useful as a biomarker, with implications for breast cancer etiology, diagnosis, and management. The relationship between primary neoplasm and metastasis remains largely unknown. There has been no comprehensive comparative study on the clinical usefulness of tumor-associated methylated DNA biomarkers in primary breast carcinoma and metastatic breast carcinoma. The objective of the present study was to investigate the association between clinical extension of breast cancer and methylation status of Estrogen Receptor1 (ESR1) and Stratifin (14-3-3-σ) gene promoters in disease-free and metastatic breast cancer patients. Methods: We studied two cohorts of patients: 77 patients treated for breast cancer with no signs of disease, and 34 patients with metastatic breast cancer. DNA was obtained from serum samples, and promoter methylation status was determined by using DNA bisulfite modification and quantitative methylation-specific PCR. Results: Serum levels of methylated gene promoter 14-3-3-σ significantly differed between Control and Metastatic Breast Cancer groups (P < 0.001), and between Disease-Free and Metastatic Breast Cancer groups (P < 0.001). The ratio of the 14-3-3-σ level before the first chemotherapy cycle to the level just before administration of the second chemotherapy cycle was defined as the Biomarker Response Ratio [BRR]. We calculated BRR values for the "continuous decline" and "rise-and-fall" groups. Subsequent ROC analysis showed a sensitivity of 75% (95% CI: 47.6 - 86.7) and a specificity of 66.7% (95% CI: 41.0 - 86.7) to discriminate between the groups for a cut-off level of BRR = 2.39. The area under the ROC curve (Z = 0.804 ± 0.074) indicates that this test is a good approach to post-treatment prognosis. Conclusions: The relationship of 14-3-3-σ with breast cancer metastasis and progression found in this study suggests a possible application of 14-3-3-σ as a biomarker to screen for metastasis and to follow up patients treated for metastatic breast cancer, monitoring their disease status and treatment response.This study was supported by a grant from the Ministerio de Ciencia e Innovación: SAF 2004-00889; JL Linares is supported by the Junta de Andalucía (P06-CTS-1385)

    Comparison of Human Primary with Human iPS Cell-Derived Dopaminergic Neuron Grafts in the Rat Model for Parkinson's Disease

    Get PDF
    Neuronal degeneration within the substantia nigra and the loss of the dopaminergic nigro-striatal pathway are the major hallmarks of Parkinson’s disease (PD). Grafts of foetal ventral mesencephalic (VM) dopaminergic (DA) neurons into the striatum have been shown to be able to restore striatal dopamine levels and to improve overall PD symptoms. However, human foetus-derived cell grafts are not feasible for clinical application. Autologous induced pluripotent stem cell (iPS cell)-derived DA neurons are emerging as an unprecedented alternative. In this review, we summarize and compare the efficacy of human iPS cell-derived DA neuron grafts to restore normal behaviour in a rat model for PD with that of human foetal primary DA neurons. The differences we observed in the efficacy to restore normal function between the 2 types of DA neuron grafts could be ascribed to intrinsic properties of the iPS cell-derived DA neurons that critically affected survival and proper neurite extension in the striatum after implantation

    Epstein-Barr Virus Latent Membrane Protein 2 Effects on Epithelial Acinus Development Reveal Distinct Requirements for the PY and YEEA motifs

    No full text
    Epstein-Barr virus (EBV) is a gammaherpesvirus associated with numerous cancers, including the epithelial cancers nasopharyngeal carcinoma (NPC) and gastric carcinoma. The latent membrane protein 2 (LMP2) encoded by EBV is consistently detected in NPC tumors and promotes a malignant phenotype when expressed in epithelial cells by inducing transformation and migration and inhibiting differentiation. Grown in three dimensions (3D) on Matrigel, the nontumorigenic mammary epithelial cell line MCF10A forms hollow, spherical acinar structures that maintain normal glandular features. Expression of oncogenes in these cells allows for the study of multiple aspects of tumor development in a 3D culture system. This study sought to examine the effects of LMP2 on the generation of MCF10A acini. LMP2 expression induced abnormal acini that were large, misshapen, and filled, indicating that LMP2 induced proliferation, impaired cellular polarization, and induced resistance to cell death, leading to luminal filling. Induction of cell death resistance required the PY, immunoreceptor tyrosine activation motif (ITAM), and YEEA signaling domains of LMP2 and activation of the Src and Akt signaling pathways. The PY domain was required for the inhibition of anoikis and also the delayed proliferative arrest of the LMP2-expressing cells. In addition to directly altering acinus formation, expression of LMP2 also induced morphological and protein expression changes consistent with epithelial-mesenchymal transition (EMT) in a manner that required only the YEEA signaling motif of LMP2. These findings indicate that LMP2 has considerable transforming properties that are not evident in standard tissue culture and requires the ability of LMP2A to bind ubiquitin ligases and Src family kinases
    corecore