11 research outputs found

    Classification of Sharks in the Egyptian Mediterranean Waters Using Morphological and DNA Barcoding Approaches

    Get PDF
    The identification of species constitutes the first basic step in phylogenetic studies, biodiversity monitoring and conservation. DNA barcoding, i.e. the sequencing of a short standardized region of DNA, has been proposed as a new tool for animal species identification. The present study provides an update on the composition of shark in the Egyptian Mediterranean waters off Alexandria, since the latest study to date was performed 30 years ago, DNA barcoding was used in addition to classical taxonomical methodologies. Thus, 51 specimen were DNA barcoded for a 667 bp region of the mitochondrial COI gene. Although DNA barcoding aims at developing species identification systems, some phylogenetic signals were apparent in the data. In the neighbor-joining tree, 8 major clusters were apparent, each of them containing individuals belonging to the same species, and most with 100% bootstrap value. This study is the first to our knowledge to use DNA barcoding of the mitochondrial COI gene in order to confirm the presence of species Squalus acanthias, Oxynotus centrina, Squatina squatina, Scyliorhinus canicula, Scyliorhinus stellaris, Mustelus mustelus, Mustelus punctulatus and Carcharhinus altimus in the Egyptian Mediterranean waters. Finally, our study is the starting point of a new barcoding database concerning shark composition in the Egyptian Mediterranean waters (Barcoding of Egyptian Mediterranean Sharks [BEMS], http://www.boldsystems.org/views/projectlist.php?&#Barcoding%20Fish%20%28FishBOL%29)

    A systematic review and meta-analysis to determine the contribution of mr imaging to the diagnosis of foetal brain abnormalities In Utero.

    Get PDF
    OBJECTIVES: This systematic review was undertaken to define the diagnostic performance of in utero MR (iuMR) imaging when attempting to confirm, exclude or provide additional information compared with the information provided by prenatal ultrasound scans (USS) when there is a suspicion of foetal brain abnormality. METHODS: Electronic databases were searched as well as relevant journals and conference proceedings. Reference lists of applicable studies were also explored. Data extraction was conducted by two reviewers independently to identify relevant studies for inclusion in the review. Inclusion criteria were original research that reported the findings of prenatal USS and iuMR imaging and findings in terms of accuracy as judged by an outcome reference diagnosis for foetal brain abnormalities. RESULTS: 34 studies met the inclusion criteria which allowed diagnostic accuracy to be calculated in 959 cases, all of which had an outcome reference diagnosis determined by postnatal imaging, surgery or autopsy. iuMR imaging gave the correct diagnosis in 91 % which was an increase of 16 % above that achieved by USS alone. CONCLUSION: iuMR imaging makes a significant contribution to the diagnosis of foetal brain abnormalities, increasing the diagnostic accuracy achievable by USS alone. KEY POINTS: ‱ Ultrasound is the primary modality for monitoring foetal brain development during pregnancy ‱ iuMRI used together with ultrasound is more accurate for detecting foetal brain abnormalities ‱ iuMR imaging is most helpful for detecting midline brain abnormalities ‱ The moderate heterogeneity of reviewed studies may compromise findings

    Tooth-implant Connection: A Literature Review

    No full text

    Personalized diagnosis and therapy.

    No full text
    Personalized medicine, i.e., the use of information about a person’s genes, proteins, metabolites, and environment to prevent, diagnose, and treat disease, has been much talked about in recent years. So some observers are wondering what the excitement is all about cumulating in the following statement: “Personalized health care is nothing new. Doctors have always tried to fit the therapy to the patient’s need if possible.” But what has happened more recently is that one has now begun to go a level deeper, i.e., to explore the biology of the disease and its treatment at the molecular level. However, molecular medicine does not per se define personalized medicine, but the molecular tools are important as they should enable greater relevance in the information provided by corresponding diagnostic tests (see below) (Edwards et al. 2008; Weedon et al. 2006; Romeo et al. 2007; Hegel et al. 1999; Wildin et al. 2001; Grant et al. 2006; Rothman and Greenland 2005; Raeder et al. 2006; Hegele et al. 2000; Capell and Collins 2006; Delepine et al. 2000; Janssens et al. 2006; Xiayan and Legido-Quigley 2008; Figeys and Pinto 2001; Müller 2002, 2010; Pearson et al. 2007; Janssens et al. 2008; Risch and Merikangas 1996; Janssens and van Duijn 2008; McCarthy 2003; McCarthy et al. 2003; Stumvoll et al. 2005; Lyssenko et al. 2005; Florez et al. 2003)
    corecore