48 research outputs found

    Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios

    Get PDF
    Assessments of inorganic elemental speciation in seawater span the past four decades. Experimentation, compilation and critical review of equilibrium data over the past forty years have, in particular, considerably improved our understanding of cation hydrolysis and the complexation of cations by carbonate ions in solution. Through experimental investigations and critical evaluation it is now known that more than forty elements have seawater speciation schemes that are strongly influenced by pH. In the present work, the speciation of the elements in seawater is summarized in a manner that highlights the significance of pH variations. For elements that have pH-dependent species concentration ratios, this work summarizes equilibrium data (S = 35, t = 25°C) that can be used to assess regions of dominance and relative species concentrations. Concentration ratios of complex species are expressed in the form log[A]/[B] = pH - C where brackets denote species concentrations in solution, A and B are species important at higher (A) and lower (B) solution pH, and C is a constant dependent on salinity, temperature and pressure. In the case of equilibria involving complex oxy-anions (MO(x)(OH)(y)) or hydroxy complexes (M(OH)(n)), C is written as pK(n )= -log K(n )or pK(n)* = -log K(n)* respectively, where K(n )and K(n)* are equilibrium constants. For equilibria involving carbonate complexation, the constant C is written as pQ = -log(K(2)(l)K(n )[HCO(3)(-)]) where K(2)(l )is the HCO(3 )(- )dissociation constant, K(n )is a cation complexation constant and [HCO(3)(-)] is approximated as 1.9 × 10(-3 )molar. Equilibrium data expressed in this manner clearly show dominant species transitions, ranges of dominance, and relative concentrations at any pH

    Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Himalayan zones, with dense forest vegetation, cover a fifth part of India and store a third part of the country reserves of soil organic carbon (SOC). However, the details of altitudinal distribution of these carbon stocks, which are vulnerable to forest management and climate change impacts, are not well known.</p> <p>Results</p> <p>This article reports the results of measuring the stocks of SOC along altitudinal gradients. The study was carried out in the coniferous subtropical and broadleaf temperate forests of Garhwal Himalaya. The stocks of SOC were found to be decreasing with altitude: from 185.6 to 160.8 t C ha<sup>-1 </sup>and from 141.6 to 124.8 t C ha<sup>-1 </sup>in temperature (<it>Quercus leucotrichophora</it>) and subtropical (<it>Pinus roxburghii</it>) forests, respectively.</p> <p>Conclusion</p> <p>The results of this study lead to conclusion that the ability of soil to stabilize soil organic matter depends negatively on altitude and call for comprehensive theoretical explanation</p

    Divalent Metal Ions Tune the Self-Splicing Reaction of the Yeast Mitochondrial Group II Intron Sc.ai5Îł

    Full text link
    Group II introns are large ribozymes, consisting of six functionally distinct domains that assemble in the presence of Mg2+ to the active structure catalyzing a variety of reactions. The first step of intron splicing is well characterized by a Michaelis–Menten-type cleavage reaction using a two-piece group II intron: the substrate RNA, the 5â€Č-exon covalently linked to domains 1, 2, and 3, is cleaved upon addition of domain 5 acting as a catalyst. Here we investigate the effect of Ca2+, Mn2+, Ni2+, Zn2+, Cd2+, Pb2+, and [Co(NH3)6]3+ on the first step of splicing of the Saccharomyces cerevisiae mitochondrial group II intron Sc.ai5Îł. We find that this group II intron is very sensitive to the presence of divalent metal ions other than Mg2+. For example, the presence of only 5% Ca2+ relative to Mg2+ results in a decrease in the maximal turnover rate k cat by 50%. Ca2+ thereby has a twofold effect: this metal ion interferes initially with folding, but then also competes directly with Mg2+ in the folded state, the latter being indicative of at least one specific Ca2+ binding pocket interfering directly with catalysis. Similar results are obtained with Mn2+, Cd2+, and [Co(NH3)6]3+. Ni2+ is a much more powerful inhibitor and the presence of either Zn2+ or Pb2+ leads to rapid degradation of the RNA. These results show a surprising sensitivity of such a large multidomain RNA on trace amounts of cations other than Mg2+ and raises the question of biological relevance at least in the case of Ca2+

    Wastewater Treatment by Electroflocculation

    No full text

    Chemical and Biological Processes in CO2-Ocean Models

    No full text
    corecore