44 research outputs found

    A Systematic Error in the Internal Friction Measurement of Coatings for Gravitational Waves Detectors

    Full text link
    Low internal friction coatings are key components of advanced technologies such as optical atomic clocks and high-finesse optical cavity and often lie at the forefront of the most advanced experiments in Physics. Notably, increasing the sensitivity of gravitational-wave detectors depends in a very large part on developing new coatings, which entails developing more suitable methods and models to investigate their loss angle. In fact, the most sensitive region of the detection band in such detectors is limited by the coating thermal noise, which is related to the loss angle of the coating. Until now, models which describe only ideal physical properties have been adopted, wondering about the use of one or more loss angles to describe the mechanical properties of coatings. Here we show the presence of a systematic error ascribed to inhomogeneity of the sample at its edges in measuring the coating loss angle. We present a model for disk-shaped resonators, largely used in loss angle measurements, and we compare the theory with measurements showing how this systematic error impacts on the accuracy with which the loss model parameters are known

    Virgo gravitational wave detector: Results and perspectives

    Get PDF
    The Virgo detector reached during the past science run a sensitivity very close to the design one. During the last year the detector has been improved by suspending the main interferometer mirrors with monolithic fibers, with the goal of reducing the thermal noise contribution and testing the new technology. At the same time the design of the next detector improvements are on-going and they will be implemented during the construction of Advanced Virgo

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Multitechnique investigation of Ta2O5 films on SiO2 substrates: comparison of optical, chemical and morphological properties

    No full text
    Ta2O5 mechanical losses seem to be the main cause of mirror thermal noise, limiting current interferometric gravitational wave detectors sensitivity in the 50-300 Hz frequency range. Work is in progress for the identification of these relaxation processes probably related with lattice defects and impurities that are distributed both in the mirror bulk and at the surface, in order to introduce step by step the suitable modifications in the samples until a stable \u201coptimum performance\u201d is obtained both from the optical and the thermo-mechanical point of view. Here we present our first results of a multitechnique characterization of Ta2O5 films deposited on SiO2 substrates. Optical, chemical and morphological properties have been investigated by means of Spectroscopic Ellipsometry, X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Measurements carried out on pure bulk Ta2O5 samples will be also reported for comparison

    A tool for measuring the bending length in thin wires

    No full text
    Great effort is currently being put into the development and construction of the second generation, advanced gravitational wave detectors, Advanced Virgo and Advanced LIGO. The development of new low thermal noise suspensions of mirrors, based on the experience gained in the previous experiments, is part of this task. Quasi-monolithic suspensions with fused silica wires avoid the problem of rubbing friction introduced by steel cradle arrangements by directly welding the wires to silica blocks bonded to the mirror. Moreover, the mechanical loss level introduced by silica (φfs ∼ 10−7 in thin fused silica wires) is by far less than the one associated with steel. The low frequency dynamical behaviour of the suspension can be computed and optimized, provided that the wire bending shape under pendulum motion is known. Due to the production process, fused silica wires are thicker near the two ends (necks), so that analytical bending computations are very complicated. We developed a tool to directly measure the low frequency bending parameters of fused silica wires, and we tested it on the wires produced for the Virgo+ monolithic suspensions. The working principle and a set of test measurements are presented and explained

    Defective Autophagy, Mitochondrial Clearance and Lipophagy in Niemann-Pick Type B Lymphocytes.

    Get PDF
    Niemann-Pick disease type A (NP-A) and type B (NP-B) are lysosomal storage diseases (LSDs) caused by sphingomyelin accumulation in lysosomes relying on reduced or absent acid sphingomyelinase. A considerable body of evidence suggests that lysosomal storage in many LSD impairs autophagy, resulting in the accumulation of poly-ubiquitinated proteins and dysfunctional mitochondria, ultimately leading to cell death. Here we test this hypothesis in a cellular model of Niemann-Pick disease type B, in which autophagy has never been studied. The basal autophagic pathway was first examined in order to evaluate its functionality using several autophagy-modulating substances such as rapamycin and nocodazole. We found that human NP-B B lymphocytes display considerable alteration in their autophagic vacuole accumulation and mitochondrial fragmentation, as well as mitophagy induction (for damaged mitochondria clearance). Furthermore, lipid traceability of intra and extra-cellular environments shows lipid accumulation in NP-B B lymphocytes and also reveals their peculiar trafficking/management, culminating in lipid microparticle extrusion (by lysosomal exocytosis mechanisms) or lipophagy. All of these features point to the presence of a deep autophagy/mitophagy alteration revealing autophagic stress and defective mitochondrial clearance. Hence, rapamycin might be used to regulate autophagy/mitophagy (at least in part) and to contribute to the clearance of lysosomal aberrant lipid storage
    corecore