46 research outputs found

    Pleiotropic Phenotypes Associated With PKP2 Variants

    Get PDF
    Plakophilin-2 (PKP2) is a component of the desmosome complex and known for its role in cell-cell adhesion. Recently, alterations in the Pkp2 gene have been associated with different inherited cardiac conditions including Arrythmogenic Cardiomyopathy (ACM or ARVC), Brugada syndrome (BrS), and idiopathic ventricular fibrillation to name the most relevant. However, the assessment of pathogenicity regarding the genetic variations associated with Pkp2 is still a challenging task: the gene has a positive Residual Variation Intolerance Score and the potential deleterious role of several of its variants has been disputed. Limitations in facilitating interpretation and annotations of these variants are seen in the lack of segregation and clinical data in the control population of reference. In this review, we will provide a summary of all the currently available genetic information related to the Pkp2 gene, including different phenotypes, ClinVar annotations and data from large control database. Our goal is to provide a literature review that could help clinicians and geneticists in interpreting the role of Pkp2 variants in the context of heritable sudden death syndromes. Limitations of current algorithms and data repositories will be discussed

    Ca2+ dysregulation in cardiac stromal cells sustains fibro-adipose remodeling in Arrhythmogenic Cardiomyopathy and can be modulated by flecainide

    Get PDF
    BACKGROUND: Cardiac mesenchymal stromal cells (C-MSC) were recently shown to differentiate into adipocytes and myofibroblasts to promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM). A calcium (Ca(2+)) signaling dysfunction, mainly demonstrated in mouse models, is recognized as a mechanism impacting arrhythmic risk in ACM cardiomyocytes. Whether similar mechanisms influence ACM C-MSC fate is still unknown. Thus, we aim to ascertain whether intracellular Ca(2+) oscillations and the Ca(2+) toolkit are altered in human C-MSC obtained from ACM patients, and to assess their link with C-MSC-specific ACM phenotypes. METHODS AND RESULTS: ACM C-MSC show enhanced spontaneous Ca(2+) oscillations and concomitant increased Ca(2+)/Calmodulin dependent kinase II (CaMKII) activation compared to control cells. This is manly linked to a constitutive activation of Store-Operated Ca(2+) Entry (SOCE), which leads to enhanced Ca(2+) release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate receptors. By targeting the Ca(2+) handling machinery or CaMKII activity, we demonstrated a causative link between Ca(2+) oscillations and fibro-adipogenic differentiation of ACM C-MSC. Genetic silencing of the desmosomal gene PKP2 mimics the remodelling of the Ca(2+) signalling machinery occurring in ACM C-MSC. The anti-arrhythmic drug flecainide inhibits intracellular Ca(2+) oscillations and fibro-adipogenic differentiation by selectively targeting SOCE. CONCLUSIONS: Altogether, our results extend the knowledge of Ca(2+) dysregulation in ACM to the stromal compartment, as an etiologic mechanism of C-MSC-related ACM phenotypes. A new mode of action of flecainide on a novel mechanistic target is unveiled against the fibro-adipose accumulation in ACM. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-022-03742-8

    Role of plakophilin-2 expression on exercise-related progression of arrhythmogenic right ventricular cardiomyopathy:a translational study

    Get PDF
    AIMS: Exercise increases arrhythmia risk and cardiomyopathy progression in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients, but the mechanisms remain unknown. We investigated transcriptomic changes caused by endurance training in mice deficient in plakophilin-2 (PKP2cKO), a desmosomal protein important for intercalated disc formation, commonly mutated in ARVC and controls. METHODS AND RESULTS: Exercise alone caused transcriptional downregulation of genes coding intercalated disk proteins. The changes converged with those in sedentary and in exercised PKP2cKO mice. PKP2 loss caused cardiac contractile deficit, decreased muscle mass and increased functional/transcriptomic signatures of apoptosis, despite increased fractional shortening and calcium transient amplitude in single myocytes. Exercise accelerated cardiac dysfunction, an effect dampened by pre-training animals prior to PKP2-KO. Consistent with PKP2-dependent muscle mass deficit, cardiac dimensions in human athletes carrying PKP2 mutations were reduced, compared to matched controls. CONCLUSIONS: We speculate that exercise challenges a cardiomyocyte "desmosomal reserve" which, if impaired genetically (e.g., PKP2 loss), accelerates progression of cardiomyopathy

    Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve

    Get PDF
    Background The central nervous origins of functional parasympathetic innervation of cardiac ventricles remain controversial. Objective This study aimed to identify a population of vagal preganglionic neurons that contribute to the control of ventricular excitability. An animal model of synuclein pathology relevant to Parkinson’s disease was used to determine whether age-related loss of the activity of the identified group of neurons is associated with changes in ventricular electrophysiology. Methods In vivo cardiac electrophysiology was performed in anesthetized rats in conditions of selective inhibition of the dorsal vagal motor nucleus (DVMN) neurons by pharmacogenetic approach and in mice with global genetic deletion of all family members of the synuclein protein. Results In rats anesthetized with urethane (in conditions of systemic beta-adrenoceptor blockade), muscarinic and neuronal nitric oxide synthase blockade confirmed the existence of a tonic parasympathetic control of cardiac excitability mediated by the actions of acetylcholine and nitric oxide. Acute DVMN silencing led to shortening of the ventricular effective refractory period (vERP), a lowering of the threshold for triggered ventricular tachycardia, and prolongation of the corrected QT (QTc) interval. Lower resting activity of the DVMN neurons in aging synuclein-deficient mice was found to be associated with vERP shortening and QTc interval prolongation. Conclusion Activity of the DVMN vagal preganglionic neurons is responsible for tonic parasympathetic control of ventricular excitability, likely to be mediated by nitric oxide. These findings provide the first insight into the central nervous substrate that underlies functional parasympathetic innervation of the ventricles and highlight its vulnerability in neurodegenerative diseases

    Correction to:The genetic architecture of Plakophilin 2 cardiomyopathy (Genetics in Medicine, (2021), 23, 10, (1961-1968), 10.1038/s41436-021-01233-7)

    Get PDF
    Due to a processing error Cynthia James, Brittney Murray, and Crystal Tichnell were assigned to the wrong affiliation. Cynthia James, Brittney Murray, and Crystal Tichnell have as their affiliation 5 Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA. In addition Hana Zouk, Megan Hawley, and Birgit Funke were assigned only to affiliation 3; they also have affiliation 4 Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. The original article has been corrected

    Clinical presentation of calmodulin mutations: the International Calmodulinopathy Registry

    Get PDF
    AIMS: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator

    A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control

    Get PDF
    Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility.

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on Na1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    La Sindrome di Brugada

    No full text
    In questo capitolo vengono presentate la caretteristiche cliniche e genetich edella Sindrome di Brugada con particolare attenzione ai nuovi geni coinvolti e alla nupove ipotesi sui meccanismi fisiopatologic
    corecore