40 research outputs found

    Discovery of new colonies by Sentinel2 reveals good and bad news for emperor

    Get PDF
    The distribution of emperor penguins is circumpolar, with 54 colony locations currently reported of which 50 are currently extant as of 2019. Here we report on eight newly discovered colonies and confirm the rediscovery of three breeding sites, only previously reported in the era before Very High Resolution satellite imagery was available, making a total of 61 breeding locations. This represents an increase of ~20% in the number of breeding sites, but, as most of the colonies appear to be small, they may only increase the total population by around 5–10%. The discoveries have been facilitated by the use of Sentinel2 satellite imagery, which has a higher resolution and more efficient search mechanism than the Landsat data previously used to search for colonies. The small size of these new colonies indicates that considerations of reproductive output in relation to metabolic rate during huddling is likely to be of interest. Some of the colonies exist in offshore habitats, something not previously reported for emperor penguins. Comparison with recent modelling results show that the geographic locations of all the newly found colonies are in areas likely to be highly vulnerable under business‐as‐usual greenhouse gas emissions scenarios, suggesting that population decreases for the species will be greater than previously thought

    Protein HP1028 from the human pathogen Helicobacter pyloribelongs to the lipocalin family

    No full text
    Helicobacter pylori is a bacterial pathogen that causes severe diseases, including gastritis, ulcers and gastric cancer. Although this bacterium has been extensively studied, the physiological functions of a large number of the proteins encoded by its genome are unknown. HP1028 is a protein that is relevant to colonization and to the survival of the bacterium in the stomach, but its function is not clearly understood. Bioinformatics studies suggest that HP1028 is a monomeric protein that is secreted in the H. pylori periplasm. The crystal structure of HP1028 has been determined at 2.6 A \u2da resolution using the SAD method. The three-dimensional structure of the protein reveals that it belongs to the lipocalin family, a group of proteins that bind and transport (often hydrophobic) small molecules. The structure of HP1028, together with the possible localization of the mature protein in the bacterial periplasm and the position of the hp1028 gene in the bacterial genome, point to a role in H. pylori chemotaxis

    Characterization of the genetic polymorphism linked to the β-casein A1/A2 alleles using different molecular and biochemical methods

    No full text
    The 2 major subvariants of β-casein (A1 and A2), coded by CSN2 gene, have received great interest in the last decade both from the scientific community and the dairy sector due to their influence on milk quality. The consumption of the A1 variant, compared with the A2 variant, has a potential negative effect on human health after its digestion but, at the same time, its presence improves the milk technological properties. The aim of the present study was to compare the best method in terms of time required, costs, and technical engagement for the identification of β-casein A1 and A2 variants (homozygous and heterozygous animals) in milk to offer a reliable service for large-scale screening studies. Two allele-specific PCR procedures, namely RFLP-PCR and amplification refractory mutation system (ARMS-PCR), and one biochemical technique (HPLC) were evaluated and validated through sequencing. Manual and automated DNA extraction protocols from milk somatic cells were also compared. Automated DNA extraction provided better yield and purity. Chromatographic analysis was the most informative and the cheapest method but unsuitable for large-scale studies due to lengthy procedures (45 min per sample). Both allele-specific PCR techniques proved to be fast and reliable for differentiating between A1 and A2 variants but more expensive than HPLC analysis. Specifically, RFLP-PCR was the most expensive and labor-demanding among the evaluated techniques, whereas ARMS-PCR was the fastest while also requiring less technical expertise. Overall, automated extraction of DNA from milk matrix combined with ARMS-PCR is the most suitable technique to provide genetic characterization of the CSN2 gene on a large scale

    Screening of Small-Molecule Libraries Using SARS-CoV-2-Derived Sequences Identifies Novel Furin Inhibitors.

    No full text
    SARS-CoV-2 is the pathogen responsible for the most recent global pandemic, which has claimed hundreds of thousands of victims worldwide. Despite remarkable efforts to develop an effective vaccine, concerns have been raised about the actual protection against novel variants. Thus, researchers are eager to identify alternative strategies to fight against this pathogen. Like other opportunistic entities, a key step in the SARS-CoV-2 lifecycle is the maturation of the envelope glycoprotein at the RARR685↓ motif by the cellular enzyme Furin. Inhibition of this cleavage greatly affects viral propagation, thus representing an ideal drug target to contain infection. Importantly, no Furin-escape variants have ever been detected, suggesting that the pathogen cannot replace this protease by any means. Here, we designed a novel fluorogenic SARS-CoV-2-derived substrate to screen commercially available and custom-made libraries of small molecules for the identification of new Furin inhibitors. We found that a peptide substrate mimicking the cleavage site of the envelope glycoprotein of the Omicron variant (QTQTKSHRRAR-AMC) is a superior tool for screening Furin activity when compared to the commercially available Pyr-RTKR-AMC substrate. Using this setting, we identified promising novel compounds able to modulate Furin activity in vitro and suitable for interfering with SARS-CoV-2 maturation. In particular, we showed that 3-((5-((5-bromothiophen-2-yl)methylene)-4-oxo-4,5 dihydrothiazol-2-yl)(3-chloro-4-methylphenyl)amino)propanoic acid (P3, IC <sub>50</sub> = 35 μM) may represent an attractive chemical scaffold for the development of more effective antiviral drugs via a mechanism of action that possibly implies the targeting of Furin secondary sites (exosites) rather than its canonical catalytic pocket. Overall, a SARS-CoV-2-derived peptide was investigated as a new substrate for in vitro high-throughput screening (HTS) of Furin inhibitors and allowed the identification of compound P3 as a promising hit with an innovative chemical scaffold. Given the key role of Furin in infection and the lack of any Food and Drug Administration (FDA)-approved Furin inhibitor, P3 represents an interesting antiviral candidate

    La spiaggia restituita

    No full text
    Questa pubblicazione presenta i progetti per la riqualificazione del tratto di costa muggesana compreso tra Punta Ronco e Punta Sottile, che gli studenti del Laboratorio di Progettazione Integrata della Facolt\ue0 di Architettura di Trieste hanno elaborato tra febbraio e giugno 2010. A partire dalle azioni di bonifica necessarie al riutilizzo dei suoli, i progetti prefigrano ipotesi diverse per il riuso di questo brano di territorio, volto a restituire a tutta l\u2019area la completa accessibilit\ue0 al mare, nonch\ue9 a fruirla sfruttandone l\u2019elevato valore paesaggistico. I temi del Laboratorio, scelti in collaborazione con il Comune di Muggia, sono stati affrontati dagli studenti integrando nei loro lavori diverse scale e diversi approcci disciplinari: da quelli attinenti al progetto architettonico e urbanistico, a quelli relativi alle scelte tecnologiche, alla fattibilit\ue0 e agli aspetti economici
    corecore