121 research outputs found

    Functional Analysis of a Unique Troponin C Mutation, GLY159ASP, that Causes Familial Dilated Cardiomyopathy, Studied in Explanted Heart Muscle

    Get PDF
    Background-Familial dilated cardiomyopathy can be caused by mutations in the proteins of the muscle thin filament. In vitro, these mutations decrease Ca2+ sensitivity and cross-bridge turnover rate, but the mutations have not been investigated in human tissue. We studied the Ca2+-regulatory properties of myocytes and troponin extracted from the explanted heart of a patient with inherited dilated cardiomyopathy due to the cTnC G159D mutation.Methods and Results-Mass spectroscopy showed that the mutant cTnC was expressed approximately equimolar with wild-type cTnC. Contraction was compared in skinned ventricular myocytes from the cTnC G159D patient and nonfailing donor heart. Maximal Ca2+-activated force was similar in cTnC G159D and donor myocytes, but the Ca2+ sensitivity of cTnC G159D myocytes was higher (EC50 G159D/donor=0.60). Thin filaments reconstituted with skeletal muscle actin and human cardiac tropomyosin and troponin were studied by in vitro motility assay. Thin filaments containing the mutation had a higher Ca2+ sensitivity (EC(50)G159D/donor=0.55 +/- 0.13), whereas the maximally activated sliding speed was unaltered. In addition, the cTnC G159D mutation blunted the change in Ca2+ sensitivity when TnI was dephosphorylated. With wild-type troponin, Ca2+ sensitivity was increased (EC50 P/unP=4.7 +/- 1.9) but not with cTnC G159D troponin (EC50 P/unP=1.2 +/- 0.1).Conclusions-We propose that uncoupling of the relationship between phosphorylation and Ca2+ sensitivity could be the cause of the dilated cardiomyopathy phenotype. The differences between these data and previous in vitro results show that native phosphorylation of troponin I and troponin T and other posttranslational modifications of sarcomeric proteins strongly influence the functional effects of a mutation. (Circ Heart Fail. 2009;2:456-464.

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Association of the Chromosome Replication Initiator DnaA with the Escherichia coli Inner Membrane In Vivo: Quantity and Mode of Binding

    Get PDF
    DnaA initiates chromosome replication in most known bacteria and its activity is controlled so that this event occurs only once every cell division cycle. ATP in the active ATP-DnaA is hydrolyzed after initiation and the resulting ADP is replaced with ATP on the verge of the next initiation. Two putative recycling mechanisms depend on the binding of DnaA either to the membrane or to specific chromosomal sites, promoting nucleotide dissociation. While there is no doubt that DnaA interacts with artificial membranes in vitro, it is still controversial as to whether it binds the cytoplasmic membrane in vivo. In this work we looked for DnaA-membrane interaction in E. coli cells by employing cell fractionation with both native and fluorescent DnaA hybrids. We show that about 10% of cellular DnaA is reproducibly membrane-associated. This small fraction might be physiologically significant and represent the free DnaA available for initiation, rather than the vast majority bound to the datA reservoir. Using the combination of mCherry with a variety of DnaA fragments, we demonstrate that the membrane binding function is delocalized on the surface of the protein’s domain III, rather than confined to a particular sequence. We propose a new binding-bending mechanism to explain the membrane-induced nucleotide release from DnaA. This mechanism would be fundamental to the initiation of replication

    Evidence That Mutation Is Universally Biased towards AT in Bacteria

    Get PDF
    Mutation is the engine that drives evolution and adaptation forward in that it generates the variation on which natural selection acts. Mutation is a random process that nevertheless occurs according to certain biases. Elucidating mutational biases and the way they vary across species and within genomes is crucial to understanding evolution and adaptation. Here we demonstrate that clonal pathogens that evolve under severely relaxed selection are uniquely suitable for studying mutational biases in bacteria. We estimate mutational patterns using sequence datasets from five such clonal pathogens belonging to four diverse bacterial clades that span most of the range of genomic nucleotide content. We demonstrate that across different types of sites and in all four clades mutation is consistently biased towards AT. This is true even in clades that have high genomic GC content. In all studied cases the mutational bias towards AT is primarily due to the high rate of C/G to T/A transitions. These results suggest that bacterial mutational biases are far less variable than previously thought. They further demonstrate that variation in nucleotide content cannot stem entirely from variation in mutational biases and that natural selection and/or a natural selection-like process such as biased gene conversion strongly affect nucleotide content

    Determinants of intra-household food allocation between adults in South Asia - a systematic review.

    Get PDF
    BACKGROUND: Nutrition interventions, often delivered at the household level, could increase their efficiency by channelling resources towards pregnant or lactating women, instead of leaving resources to be disproportionately allocated to traditionally favoured men. However, understanding of how to design targeted nutrition programs is limited by a lack of understanding of the factors affecting the intra-household allocation of food. METHODS: We systematically reviewed literature on the factors affecting the allocation of food to adults in South Asian households (in Afghanistan, Bangladesh, Bhutan, India, Islamic Republic of Iran, Maldives, Nepal, Pakistan, Sri Lanka) and developed a framework of food allocation determinants. Two reviewers independently searched and filtered results from PubMed, Web of Knowledge and Scopus databases by using pre-defined search terms and hand-searching the references from selected papers. Determinants were extracted, categorised into a framework, and narratively described. We used adapted Downs and Black and Critical Appraisal Skills Programme checklists to assess the quality of evidence. RESULTS: Out of 6928 retrieved studies we found 60 relevant results. Recent, high quality evidence was limited and mainly from Bangladesh, India and Nepal. There were no results from Iran, Afghanistan, Maldives, or Bhutan. At the intra-household level, food allocation was determined by relative differences in household members' income, bargaining power, food behaviours, social status, tastes and preferences, and interpersonal relationships. Household-level determinants included wealth, food security, occupation, land ownership, household size, religion / ethnicity / caste, education, and nutrition knowledge. In general, the highest inequity occurred in households experiencing severe or unexpected food insecurity, and also in better-off, high caste households, whereas poorer, low caste but not severely food insecure households were more equitable. Food allocation also varied regionally and seasonally. CONCLUSION: Program benefits may be differentially distributed within households of different socioeconomic status, and targeting of nutrition programs might be improved by influencing determinants that are amenable to change, such as food security, women's employment, or nutrition knowledge. Longitudinal studies in different settings could unravel causal effects. Conclusions are not generalizable to the whole South Asian region, and research is needed in many countries

    DNA replication defect in the Escherichia coli cgtA (ts) mutant arising from reduced DnaA levels

    Full text link
    In Escherichia coli and other bacteria, the ribosome-associated CgtA GTP-binding protein plays a critical role in many basic cellular processes, including the control of DNA replication and/or segregation. However, the mechanism of this control is largely unknown. Here we report that ectopic expression of the dnaA gene partially restored both early growth in liquid medium and DNA synthesis defects of the cgtA (ts) mutant. Amounts of DnaA protein in the cgtA (ts) mutant incubated at elevated (42°C) temperature were significantly lower relative to wild-type bacteria. Both level of dnaA mRNA and transcriptional activity of the dnaA promoter- lacZ fusion were decreased in the CgtA-deficient cells. The effects of ectopic expression of dnaA were specific as analogous expression of another gene coding for a replication regulator, seqA , had no significant changes in growth and DNA synthesis in the cgtA mutant. Thus, it appears that the DNA replication defect in this mutant is a consequence of reduced DnaA levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45857/1/203_2006_Article_99.pd

    Epidemiology of Invasive Fungal Infections in Latin America

    Get PDF
    The pathogenic role of invasive fungal infections (IFIs) has increased during the past two decades in Latin America and worldwide, and the number of patients at risk has risen dramatically. Working habits and leisure activities have also been a focus of attention by public health officials, as endemic mycoses have provoked a number of outbreaks. An extensive search of medical literature from Latin America suggests that the incidence of IFIs from both endemic and opportunistic fungi has increased. The increase in endemic mycoses is probably related to population changes (migration, tourism, and increased population growth), whereas the increase in opportunistic mycoses may be associated with the greater number of people at risk. In both cases, the early and appropriate use of diagnostic procedures has improved diagnosis and outcome

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy
    corecore