69 research outputs found

    Hypertrophy of mature xenopus muscle fibres in culture induced by synergy of albumin and insulin

    Get PDF
    The aim of this study was to investigate effects of albumin and insulin separately as well as in combination on mature muscle fibres during long-term culture. Single muscle fibres were dissected from m. iliofibularis of Xenopus laevis and attached to a force transducer in a culture chamber. Fibres were cultured in a serum-free medium at slack length (mean sarcomere length 2.3 μm) for 8 to 22 days. The medium was supplemented with (final concentrations): (1) bovine insulin (6 nmol/L or 200-600 nmol/L), (2) 0.2% bovine albumin or (3) 0.2% bovine albumin in combination with insulin (120 nmol/L). In culture medium with insulin, 50% of the muscle fibres became in-excitable within 7-12 days, whereas the other 50% were stable. Caffeine contractures of in-excitable muscle fibres produced 80.4±2.4% of initial peak tetanic force, indicating impaired excitation-contraction (E-C) coupling in in-excitable fibres. In the presence of albumin, all cultured muscle fibres were stable for at least 10 days. Muscle fibres cultured in medium with insulin or albumin exclusively did not hypertrophy or change the number of sarcomeres in series. In contrast, muscle fibres cultured with both albumin and insulin showed an increase in tetanic force and fibre cross-sectional area of 19.6±2.8% and 32.5±4.9%, respectively, (means±SEM.; P=0.007) after 16.3±1.7 days, whereas the number of sarcomeres in series remained unchanged. We conclude that albumin prevents muscle fibre damage and preserves E-C coupling in culture. Furthermore, albumin is important in regulating muscle fibre adaptation by a synergistic action with growth factors like insulin. © 2008 The Author(s)

    Targeting the epigenome: effects of epigenetic treatment strategies on genomic stability in healthy human cells

    Get PDF
    Epigenetic treatment concepts have long been ascribed as being tumour-selective. Over the last decade, it has become evident that epigenetic mechanisms are essential for a wide range of intracellular functions in healthy cells as well. Evaluation of possible side-effects and their underlying mechanisms in healthy human cells is necessary in order to improve not only patient safety, but also to support future drug development. Since epigenetic regulation directly interacts with genomic and chromosomal packaging density, increasing genomic instability may be a result subsequent to drug-induced epigenetic modifications. This review highlights past and current research efforts on the influence of epigenetic modification on genomic stability in healthy human cells

    What is the value and impact of quality and safety teams? A scoping review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to conduct a scoping review of the literature about the establishment and impact of quality and safety team initiatives in acute care.</p> <p>Methods</p> <p>Studies were identified through electronic searches of Medline, Embase, CINAHL, PsycINFO, ABI Inform, Cochrane databases. Grey literature and bibliographies were also searched. Qualitative or quantitative studies that occurred in acute care, describing how quality and safety teams were established or implemented, the impact of teams, or the barriers and/or facilitators of teams were included. Two reviewers independently extracted data on study design, sample, interventions, and outcomes. Quality assessment of full text articles was done independently by two reviewers. Studies were categorized according to dimensions of quality.</p> <p>Results</p> <p>Of 6,674 articles identified, 99 were included in the study. The heterogeneity of studies and results reported precluded quantitative data analyses. Findings revealed limited information about attributes of successful and unsuccessful team initiatives, barriers and facilitators to team initiatives, unique or combined contribution of selected interventions, or how to effectively establish these teams.</p> <p>Conclusions</p> <p>Not unlike systematic reviews of quality improvement collaboratives, this broad review revealed that while teams reported a number of positive results, there are many methodological issues. This study is unique in utilizing traditional quality assessment and more novel methods of quality assessment and reporting of results (SQUIRE) to appraise studies. Rigorous design, evaluation, and reporting of quality and safety team initiatives are required.</p

    PLoS Pathog

    Get PDF
    Cytomegalovirus (CMV) is a leading infectious cause of morbidity in immune-compromised patients. γδ T cells have been involved in the response to CMV but their role in protection has not been firmly established and their dependency on other lymphocytes has not been addressed. Using C57BL/6 αβ and/or γδ T cell-deficient mice, we here show that γδ T cells are as competent as αβ T cells to protect mice from CMV-induced death. γδ T cell-mediated protection involved control of viral load and prevented organ damage. γδ T cell recovery by bone marrow transplant or adoptive transfer experiments rescued CD3ε-/- mice from CMV-induced death confirming the protective antiviral role of γδ T cells. As observed in humans, different γδ T cell subsets were induced upon CMV challenge, which differentiated into effector memory cells. This response was observed in the liver and lungs and implicated both CD27+ and CD27- γδ T cells. NK cells were the largely preponderant producers of IFNγ and cytotoxic granules throughout the infection, suggesting that the protective role of γδ T cells did not principally rely on either of these two functions. Finally, γδ T cells were strikingly sufficient to fully protect Rag-/-γc-/- mice from death, demonstrating that they can act in the absence of B and NK cells. Altogether our results uncover an autonomous protective antiviral function of γδ T cells, and open new perspectives for the characterization of a non classical mode of action which should foster the design of new γδ T cell based therapies, especially useful in αβ T cell compromised patients

    Permeation, regulation and control of expression of TRP channels by trace metal ions

    Get PDF
    corecore