13 research outputs found
Bovine endometrial stromal cells display osteogenic properties
The endometrium is central to mammalian fertility. The endometrial stromal cells are very dynamic, growing and differentiating throughout the estrous cycle and pregnancy. In humans, stromal cells appear to have progenitor or stem cell capabilities and the cells can even differentiate into bone. It is not clear whether bovine endometrial stromal cells exhibit a similar phenotypic plasticity. So, the present study tested the hypothesis that bovine endometrial stromal cells could be differentiated along an osteogenic lineage. Pure populations of bovine stromal cells were isolated from the endometrium. The endometrial stromal cell phenotype was confirmed by morphology, prostaglandin secretion, and susceptibility to viral infection. However, cultivation of the cells in standard endometrial cell culture medium lead to a mesenchymal phenotype similar to that of bovine bone marrow cells. Furthermore, the endometrial stromal cells developed signs of osteogenesis, such as alizarin positive nodules. When the stromal cells were cultured in a specific osteogenic medium the cells rapidly developed the characteristics of mineralized bone. In conclusion, the present study has identified that stromal cells from the bovine endometrium show a capability for phenotype plasticity similar to mesenchymal progenitor cells. These observations pave the way for further investigation of the mechanisms of stroma cell differentiation in the bovine reproductive tract
Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development
This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public DomainVKR is supported by grants from the Biotechnology and Biological Sciences Research Council, UK (BB/M012494/1), VKR and CG by (BB/G00711/X/1). MLH is supported by a Research Council UK Academic Fellowship. RL is supported by EU-FP7 BLUEPRINT
Impaired glucose metabolism in response to high fat diet in female mice conceived by in vitro fertilization (IVF) or ovarian stimulation alone
Individuals conceived by in vitro fertilization (IVF) may be at increased risk of cardio-metabolic disorders. We recently reported that IVF conceived male mice displayed impaired glucose metabolism at normal and high body weights. In this study, we examined glucose metabolism in mature female C57BL/6J mice that were conceived by natural conception (NC), by ovarian stimulation (OS) or by IVF following chow or high-fat diet (HFD) for 8 weeks. By design, litter size was comparable between groups, but interestingly the birth weight of IVF and OS females was lower than NC females (p≤0.001). Mature IVF female mice displayed increased fasting glucose as compared to NC and OS mice, irrespective of diet. Mature IVF and OS mice were also more susceptible to the metabolic consequences of high fat diet as compared with NC females, with impaired glucose tolerance (p≤0.01), whereas peripheral insulin resistance and increased hepatic expression of gluconeogenic genes Ppargc1α, Pck1 and G6pc was observed in IVF mice only (p<0.05). This study suggests that ovarian stimulation alone and IVF program distinct metabolic effects in females, but that high fat diet may be required to unmask these effects. This study adds to the growing body of literature that assisted reproduction procedures may increase the risk of developing type 2 diabetes in an obesity prone environment.Miaoxin Chen, Linda Wu, Fang Wu, Gary A. Wittert, Robert J. Norman, Rebecca L. Robker, Leonie K. Heilbron
Prolactin Secretion in Healthy Adults Is Determined by Gender, Age and Body Mass Index
BACKGROUND: Prolactin (PRL) secretion is quantifiable as mean, peak and nadir PRL concentrations, degree of irregularity (ApEn, approximate entropy) and spikiness (brief staccato-like fluctuations). HYPOTHESIS: Distinct PRL dynamics reflect relatively distinct (combinations of) subject variables, such as gender, age, and BMI. LOCATION: Clinical Research Unit. SUBJECTS: Seventy-four healthy adults aged 22–77 yr (41 women and 33 men), with BMI 18.3–39.4 kg/m(2). MEASURES: Immunofluorometric PRL assay of 10-min samples collected for 24 hours. RESULTS: Mean 24-h PRL concentration correlated jointly with gender (P<0.0001) and BMI (P = 0.01), but not with age (overall R(2) = 0.308, P<0.0001). Nadir PRL concentration correlated with gender only (P = 0.017) and peak PRL with gender (P<0.001) and negatively with age (P<0.003), overall R(2) = 0.325, P<0.0001. Forward-selection multivariate regression of PRL deconvolution results demonstrated that basal (nonpulsatile) PRL secretion tended to be associated with BMI (R(2) = 0.058, P = 0.03), pulsatile secretion with gender (R(2) = 0.152, P = 0.003), and total secretion with gender and BMI (R(2) = 0.204, P<0.0001). Pulse mass was associated with gender (P = 0.001) and with a negative tendency to age (P = 0.038). In male subjects older than 50 yr (but not in women) approximate entropy was increased (0.942±0.301 vs. 1.258±0.267, P = 0.007) compared with younger men, as well as spikiness (0.363±0.122 vs. 0463±2.12, P = 0.031). Cosinor analysis disclosed higher mesor and amplitude in females than in men, but the acrophase was gender-independent. The acrophase was determined by age and BMI (R(2) = 0.186, P = 0.001). CONCLUSION: In healthy adults, selective combinations of gender, age, and BMI specify distinct PRL dynamics, thus requiring balanced representation of these variables in comparative PRL studies