31 research outputs found

    Chronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Environmental Health Perspectives 117 (2009): 1108-1115, doi:10.1289/ehp.0800199.Chronic exposure to drinking water arsenic is a significant worldwide environmental health concern. Exposure to As is associated with an increased risk of lung disease, which may make it a unique toxicant, because lung toxicity is usually associated with inhalation rather than ingestion. The goal of this study was to examine mRNA and protein expression changes in the lungs of mice exposed chronically to environmentally relevant concentrations of As in the food or drinking water, specifically examining the hypothesis that As may preferentially affect gene and protein expression related to immune function as part of its mechanism of toxicant action. C57BL/6J mice fed a casein-based AIN-76A defined diet were exposed to 10 or 100 ppb As in drinking water or food for 5–6 weeks. Whole genome transcriptome profiling of animal lungs revealed significant alterations in the expression of many genes with functions in cell adhesion and migration, channels, receptors, differentiation and proliferation, and, most strikingly, aspects of the innate immune response. Confirmation of mRNA and protein expression changes in key genes of this response revealed that genes for interleukin 1β, interleukin 1 receptor, a number of toll-like receptors, and several cytokines and cytokine receptors were significantly altered in the lungs of As-exposed mice. These findings indicate that chronic low-dose As exposure at the current U.S. drinking-water standard can elicit effects on the regulation of innate immunity, which may contribute to altered disease risk, particularly in lung.This work was supported by National Institute of Environmental Health Science grant P42 ES007373 [J.W.H., Superfund Basic Research Program (SBRP) project 2]. C.D.K., A.P.N., and J.A.G. were supported by graduate and postdoctoral fellowships from P42 ES007373 (SBRP, Training Core). C.D.K. was also supported by National Institutes of Health training grant predoctoral fellowship T32-DF007301. P.L.E. and D.J.W. were supported by Cystic Fibrosis Foundation Research grant HL081289

    Cell Cycle Phase Regulates Glucocorticoid Receptor Function

    Get PDF
    The glucocorticoid receptor (GR) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. In contrast to many other nuclear receptors, GR is thought to be exclusively cytoplasmic in quiescent cells, and only translocate to the nucleus on ligand binding. We now demonstrate significant nuclear GR in the absence of ligand, which requires nuclear localisation signal 1 (NLS1). Live cell imaging reveals dramatic GR import into the nucleus through interphase and rapid exclusion of the GR from the nucleus at the onset of mitosis, which persists into early G1. This suggests that the heterogeneity in GR distribution is reflective of cell cycle phase

    Nutritional Value of Muscle Foods

    No full text
    corecore