64 research outputs found

    Technology-supported learning innovation in cultural contexts

    Get PDF
    Many reform initiatives adopt a reductionist, proceduralized approach to cultural change, assuming that deep changes can be realized by introducing new classroom activities, textbooks, and technological tools. This article elaborates a complex system perspective of learning culture: A learning culture as a complex system involves macro-level properties (e.g., epistemological beliefs, social values, power structures) and micro-level features (e.g., technology, classroom activities). Deep changes in macro-level properties cannot be reduced to any component. This complex system perspective is applied to examining technology-supported educational change in East Asia and analyzing how teachers sustain the knowledge building innovation in different contexts. Working with the macro-micro dynamics in a learning culture requires a principle-based approach to learning innovation that specifies macro-level changes using principle-based instead of procedure-based terms and engages teachers’ deep reflection and creative engagement at both the macro- and the micro-level

    Multi-Parametric Analysis and Modeling of Relationships between Mitochondrial Morphology and Apoptosis

    Get PDF
    Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis

    Effects of a mechanical engineering design course on students’ motivational features

    Get PDF
    Diverse learning opportunities and deep engagement are needed to support development of engineering competencies and expertise. Deep engagement evolves from productive and high-quality motivation that derives from both internal and external sources. Motivation to learn is lacking in many fields, like engineering, because it is too often assumed or ignored, rather than explicitly built into course instruction. While the lack of motivation in engineering education is clear in data-like attrition, there is little relevant research that informs the necessary changes for the field. The purpose of this study is to present a systematic approach that explicitly considers motivational elements in engineering courses. First a comprehensive set of motivational characteristics and the interrelationships for productive motivation of mechanical engineering students are identified. Students’ motivational characteristics and profiles of change over time are assessed using a multipoint predictive correlational design. This information is then used to strategically redesign motivational elements of a senior-level mechanical engineering design course. The SUCCESS framework has been used to redesign motivational features of the existing course. This paper reports results of the study, including implications for redesign of other engineering courses. Analysis of the data demonstrates the complexity of motivation in the engineering classroom, which includes addressing implicit and explicit, intrinsic and extrinsic, individual and team interaction and instruction. These elements extend not only to direct communication and interactions of instructor with students but into the full scope of the learning environment, peer-to-peer interactions, grading, (a)synchronous activities, face to face, and virtual communications. Key features of engineering students’ productive (learning and engagement-related) motivational profiles consisted of clusters of perceptual and experiential variables that were strongly correlated with motivational and learning outcomes. Tracking these factors demonstrated that they changed over time. These changes corresponded to perceptions of instructor and peer interactions, which were amenable to instructional intervention and responsive to social modeling. This study also revealed links among engineering students’ perceptions of their field of study, their own development of self-efficacy, and success expectations in both the design course and for their careers. This work revealed important distinctions between engineering students’ self-efficacy for, and engagement in, the course generally and for group tasks more specifically. These newly revealed relationships offer the opportunity to improve engineering instruction and the design of dynamic learning environments that support adaptive skill development.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
    • …
    corecore