8 research outputs found

    Sludge population optimisation in biological nutrient removal wastewater treatment systems through on-line process control: a review

    No full text
    On-line process control may cause substantial changes to the microbial community in a biological wastewater treatment system. Recent studies have shown such effects can be exploited in control system design to achieve an optimised microbial community. Excellent progress has been made on the elimination of nitrite-oxidising bacteria (NOB) in biological nitrogen removal wastewater treatment systems using on-line aeration control, enabling nitrogen removal via the nitrite pathway. Control methods for eliminating NOB are now available for both continuous systems and sequencing batch reactors, and have been demonstrated with both domestic and various types of industrial wastewaters. The elimination or reduced growth of glycogen accumulating organisms (GAOs), a competitor of polyphosphate accumulating organisms (PAOs), in enhanced biological phosphorus removal (EBPR) systems via pH and carbon source control has been conceptually demonstrated through the use of enriched cultures. However, these strategies are not yet ready for the control of practical EBPR processes. Sludge population optimisation also involves selecting the most desirable organism or a consortium of organisms to perform a required function. This is particularly important for nitrification, one of the most important and delicate steps in modern wastewater treatment plants. Results from both experimental and simulation studies suggest that reactor operation could have a major impact on the nitrifier community structure, which should be further investigated in future studies

    Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities

    No full text
    Enhanced biological phosphorus removal (EBPR) communities protect waterways from nutrient pollution and enrich microorganisms capable of assimilating acetate as polyhydroxyalkanoate (PHA) under anaerobic conditions. Accumulibacter, an important uncultured polyphosphate-accumulating organism (PAO) enriched in EBPR, was investigated to determine the central metabolic pathways responsible for producing PHA. Acetate uptake and assimilation to PHA in Accumulibacter was confirmed using fluorescence in situ hybridization (FISH)-microautoradiography and post-FISH chemical staining. Assays performed with enrichments of Accumulibacter using an inhibitor of glyceraldehyde-3-phosphate dehydrogenase inferred anaerobic glycolysis activity. Significant decrease in anaerobic acetate uptake and PHA production rates were observed using inhibitors targeting enzymes within the glyoxylate cycle. Bioinformatic analysis confirmed the presence of genes unique to the glyoxylate cycle (isocitrate lyase and malate synthase) and gene expression analysis of isocitrate lyase demonstrated that the glyoxylate cycle is likely involved in PHA production. Reduced anaerobic acetate uptake and PHA production was observed after inhibition of succinate dehydrogenase and upregulation of a succinate dehydrogenase gene suggested anaerobic activity. Cytochrome b/b6 activity inferred that succinate dehydrogenase activity in the absence of external electron acceptors may be facilitated by a novel cytochrome b/b6 fusion protein complex that pushes electrons uphill to more electronegative electron carriers. Identification of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase genes in Accumulibacter demonstrated the potential for interconversion of C3 intermediates of glycolysis and C4 intermediates of the glyoxylate cycle. Our findings along with previous hypotheses from analysis of microbiome data and metabolic models for PAOs were used to develop a model for anaerobic carbon metabolism in Accumulibacter

    Design, operation and technology configurations for enhanced biological phosphorus removal (EBPR) process: a review

    No full text
    corecore