68 research outputs found

    Dynamic physiological temperature and pressure sensing with phase-resolved low-coherence interferometry

    Get PDF
    We report the development and characterisation of highly miniaturised fibre-optic sensors for simultaneous pressure and temperature measurement, and a compact interrogation system with a high sampling rate. The sensors, which have a maximum diameter of 250 µm, are based on multiple low-finesse optical cavities formed from polydimethylsiloxane (PDMS), positioned at the distal ends of optical fibres, and interrogated using phase-resolved low-coherence interferometry. At acquisition rates of 250 Hz, temperature and pressure changes of 0.0021 °C and 0.22 mmHg are detectable. An in vivo experiment demonstrated that the sensors had sufficient speed and sensitivity for monitoring dynamic physiological pressure waveforms. These sensors are ideally suited to various applications in minimally invasive surgery, where diminutive lateral dimensions, high sensitivity and low manufacturing complexities are particularly valuable

    Micron resolution, high-fidelity three-dimensional vascular optical imaging phantoms

    Get PDF
    Microscopic and mesoscale optical imaging techniques allow for three-dimensional (3-D) imaging of biological tissue across millimeter-scale regions, and imaging phantom models are invaluable for system characterization and clinical training. Phantom models that replicate complex 3-D geometries with both structural and molecular contrast, with resolution and lateral dimensions equivalent to those of imaging techniques (<20  μm), have proven elusive. We present a method for fabricating phantom models using a combination of two-photon polymerization (2PP) to print scaffolds, and microinjection of tailored tissue-mimicking materials to simulate healthy and diseased tissue. We provide a first demonstration of the capabilities of this method with intravascular optical coherence tomography, an imaging technique widely used in clinical practice. We describe the design, fabrication, and validation of three types of phantom models: a first with subresolution wires (5- to 34-μm diameter) arranged circumferentially, a second with a vessel side-branch, and a third containing a lipid inclusion within a vessel. Silicone hybrid materials and lipids, microinjected within a resin framework created with 2PP, served as tissue-mimicking materials that provided realistic optical scattering and absorption. We demonstrate that optical phantom models made with 2PP and microinjected tissue-mimicking materials can simulate complex anatomy and pathology with exquisite detail

    Optical coherence tomography evaluation of pulmonary arterial vasculopathy in Systemic Sclerosis

    Get PDF
    Our current understanding of the pathophysiology of pulmonary vascular disease is incomplete, since information about alterations of the pulmonary vasculature in pulmonary arterial hypertension (PAH) is primarily provided by autopsy or tissue specimens. The aim of this study was to compare the distal pulmonary vasculature of <2 mm in diameter in Systemic Sclerosis (SSc) patients with (n = 17) and without (n = 5) associated PAH using Optical Coherence Tomography during Right Heart catheterization. SSc-PAH patients showed significant thickening of Intima Media Thickening Area compared to patients without PAH (27 +/- 5.8% vs. 21 +/- 1.4%, p = 0.024). A good haemodynamic response to previous targeted PAH treatment was associated with a significantly greater number of small pulmonary artery side branches <300 μm per cm vessel (3.8 +/- 1.1 vs. 1.8 +/- 1.1; p = 0.010) and not associated with Intima Media thickening Area (26 +/- 5.4% vs. 28 +/- 6.7%; p = 0.6). Unexpected evidence of pulmonary artery thrombus formation was found in 19% of SSc-PAH patients. This is the first in-vivo study demonstrating a direct link between a structural abnormality of pulmonary arteries and a response to targeted treatment in PAH. Intravascular imaging may identify subgroups that may benefit from anticoagulation

    All-optical dual photoacoustic and optical coherence tomography intravascular probe

    Get PDF
    Intravascular imaging in percutaneous coronary interventions can be an invaluable tool in the treatment of coronary artery disease. It is of significant interest to provide molecular imaging contrast that is complementary to structural contrast provided by optical coherence tomography (OCT) and intravascular ultrasound imaging (IVUS). In this study, we developed a dual-modality intravascular imaging probe comprising a commercial OCT catheter and a high sensitivity fiber optic ultrasound sensor, to provide both photoacoustic (PA) and OCT imaging. With PA imaging, the lateral resolution varied from 18 μm to 40 μm; the axial resolution was consistently in the vicinity of 45 μm. We demonstrated the clinical potential of the probe with 2-D circumferential PA and OCT imaging, and with multispectral PA imaging

    All-Optical Rotational Ultrasound Imaging

    Get PDF
    Miniaturised high-resolution imaging devices are valuable for guiding minimally invasive procedures such as vascular stent placements. Here, we present all-optical rotational B-mode pulse-echo ultrasound imaging. With this device, ultrasound transmission and reception are performed with light. The all-optical transducer in the probe comprised an optical fibre that delivered pulsed excitation light to an optical head at the distal end with a multi-walled carbon nanotube and polydimethylsiloxane composite coating. This coating was photoacoustically excited to generate a highly directional ultrasound beam perpendicular to the optical fibre axis. A concave Fabry-Pérot cavity at the distal end of an optical fibre, which was interrogated with a tuneable continuous-wave laser, served as an omnidirectional ultrasound receiver. The transmitted ultrasound had a −6 dB bandwidth of 31.3 MHz and a peak-to-peak pressure of 1.87 MPa, as measured at 1.5 mm from the probe. The receiver had a noise equivalent pressure <100 Pa over a 20 MHz bandwidth. With a maximum outer probe diameter of 1.25 mm, the probe provided imaging with an axial resolution better than 50 µm, and a real-time imaging rate of 5 frames per second. To investigate the capabilities of the probe, intraluminal imaging was performed in healthy swine carotid arteries. The results demonstrate that the all-optical probe is viable for clinical rotational ultrasound imaging

    PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews

    Get PDF
    The methods and results of systematic reviews should be reported in sufficient detail to allow users to assess the trustworthiness and applicability of the review findings. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement was developed to facilitate transparent and complete reporting of systematic reviews and has been updated (to PRISMA 2020) to reflect recent advances in systematic review methodology and terminology. Here, we present the explanation and elaboration paper for PRISMA 2020, where we explain why reporting of each item is recommended, present bullet points that detail the reporting recommendations, and present examples from published reviews. We hope that changes to the content and structure of PRISMA 2020 will facilitate uptake of the guideline and lead to more transparent, complete, and accurate reporting of systematic reviews

    Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) statement: updated reporting guidance for health economic evaluations.

    Get PDF
    Health economic evaluations are comparative analyses of alternative courses of action in terms of their costs and consequences. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement, published in 2013, was created to ensure health economic evaluations are identifiable, interpretable, and useful for decision making. It was intended as guidance to help authors report accurately which health interventions were being compared and in what context, how the evaluation was undertaken, what the findings were, and other details that may aid readers and reviewers in interpretation and use of the study. The new CHEERS 2022 statement replaces previous CHEERS reporting guidance. It reflects the need for guidance that can be more easily applied to all types of health economic evaluation, new methods and developments in the field, as well as the increased role of stakeholder involvement including patients and the public. It is also broadly applicable to any form of intervention intended to improve the health of individuals or the population, whether simple or complex, and without regard to context (such as health care, public health, education, social care, etc). This summary article presents the new CHEERS 2022 28-item checklist and recommendations for each item. The CHEERS 2022 statement is primarily intended for researchers reporting economic evaluations for peer reviewed journals as well as the peer reviewers and editors assessing them for publication. However, we anticipate familiarity with reporting requirements will be useful for analysts when planning studies. It may also be useful for health technology assessment bodies seeking guidance on reporting, as there is an increasing emphasis on transparency in decision making

    Migraine in women: the role of hormones and their impact on vascular diseases

    Get PDF
    Migraine is a predominantly female disorder. Menarche, menstruation, pregnancy, and menopause, and also the use of hormonal contraceptives and hormone replacement treatment may influence migraine occurrence. Migraine usually starts after menarche, occurs more frequently in the days just before or during menstruation, and ameliorates during pregnancy and menopause. Those variations are mediated by fluctuation of estrogen levels through their influence on cellular excitability or cerebral vasculature. Moreover, administration of exogenous hormones may cause worsening of migraine as may expose migrainous women to an increased risk of vascular disease. In fact, migraine with aura represents a risk factor for stroke, cardiac disease, and vascular mortality. Studies have shown that administration of combined oral contraceptives to migraineurs may further increase the risk for ischemic stroke. Consequently, in women suffering from migraine with aura caution should be deserved when prescribing combined oral contraceptives

    The primary headaches: genetics, epigenetics and a behavioural genetic model

    Get PDF
    The primary headaches, migraine with (MA) and without aura (MO) and cluster headache, all carry a substantial genetic liability. Familial hemiplegic migraine (FHM), an autosomal dominant mendelian disorder classified as a subtype of MA, is due to mutations in genes encoding neural channel subunits. MA/MO are considered multifactorial genetic disorders, and FHM has been proposed as a model for migraine aetiology. However, a review of the genetic studies suggests that the FHM genes are not involved in the typical migraines and that FHM should be considered as a syndromic migraine rather than a subtype of MA. Adopting the concept of syndromic migraine could be useful in understanding migraine pathogenesis. We hypothesise that epigenetic mechanisms play an important role in headache pathogenesis. A behavioural model is proposed, whereby the primary headaches are construed as behaviours, not symptoms, evolutionarily conserved for their adaptive value and engendered out of a genetic repertoire by a network of pattern generators present in the brain and signalling homeostatic imbalance. This behavioural model could be incorporated into migraine genetic research
    corecore