27 research outputs found

    Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination

    Get PDF
    Mesenchymal stem cells (MSCs) are efficacious in a variety of intractable diseases. While bone marrow (BM)-derived MSCs (BM-MSCs) have been widely investigated, MSCs from other tissue sources have also been shown to be effective in several autoimmune and inflammatory disorders. In the present study, we simultaneously assessed the therapeutic efficacy of human BM-MSCs, as well as MSCs isolated from adipose tissue (Ad-MSCs) and umbilical cord Wharton's jelly (UC-MSCs), in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Prior to in vivo experiments, we characterized the phenotype and function of all three MSC types. We show that BM-MSCs were more efficient at suppressing the in vitro proliferation of mitogen or antigen-stimulated T-cell responses compared to Ad-MSCs and UC-MSCs. Notably BM-MSCs induced the differential expression of cytokines from normal and stimulated T-cells. Paradoxically, intravenous transplantation of BM-MSCs into C57Bl/6 mice with chronic progressive EAE had a negligible effect on the disease course, even when multiple MSC injections were administered over a number of time points. In contrast, Ad-MSCs had the most significant impact on clinical and pathological disease outcomes in chronic progressive and relapsing–remitting EAE models. In vivo tracking studies revealed that Ad-MSCs were able to migrate to the central nervous system (CNS), a property that most likely correlated with their broader expression of homing molecules, while BM-MSCs were not detected in this anatomic region. Collectively, this comparative investigation demonstrates that transplanted Ad-MSCs play a significant role in tissue repair processes by virtue of their ability to suppress inflammation coupled with their enhanced ability to home to the injured CNS. Given the access and relatively ease for harvesting adipose tissue, these data further implicate Ad-MSCs as a cell therapeutic that may be used to treat MS patients. </jats:p

    Comparison of the Rat and Mouse Encephalitogenic Determinants

    No full text

    B-cell very late antigen-4 deficiency reduces leukocyte recruitment and susceptibility to central nervous system autoimmunity

    No full text
    © 2015 The Authors Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.Natalizumab, which binds very late antigen-4 (VLA-4), is a potent therapy for multiple sclerosis (MS). Studies have focused primaril

    MOG transmembrane and cytoplasmic domains contain highly stimulatory T-cell epitopes in MS

    No full text
    OBJECTIVE: Recently, we reported that the 218 amino acid murine full-length myelin oligodendrocyte glycoprotein (MOG) contains novel T-cell epitopes p119-132, p181-195, and p186-200, located within its transmembrane and cytoplasmic domains, and that p119-132 is its immunodominant encephalitogenic T-cell epitope in mice. Here, we investigated whether the corresponding human MOG sequences contain T-cell epitopes in patients with multiple sclerosis (MS) and healthy controls (HC). METHODS: Peripheral blood T cells from patients with MS and HC were examined for proliferation to MOG p119-130, p181-195, p186-200, and p35-55 by fluorescence-activated cell sorting analysis using carboxylfluorescein diacetate succinimidyl ester dilution assay. Intracellular production of proinflammatory cytokines was analyzed by flow cytometry. RESULTS: MOG p119-130, p181-195, and p186-200 elicited significantly greater T-cell responses than p35-55 in patients with MS. T cells from patients with MS proliferated significantly more strongly to MOG p119-130 and p186-200 than did T cells from HC. Further, MOG p119-130–specific T cells exhibited Th17 polarization, suggesting this T-cell epitope may be relevant to MS pathogenesis. CONCLUSIONS: Transmembrane and cytoplasmic MOG domains contain potent T-cell epitopes in MS. Recognition of these determinants is important when evaluating T-cell responses to MOG in MS and may have implications for development of myelin antigen-based therapeutics
    corecore