52 research outputs found

    RNAi-mediated COPS3 gene silencing inhibits metastasis of osteogenic sarcoma cells

    Get PDF
    Metastatic disease is the primary cause of mortality among patients with osteogenic sarcoma (OGS). In this study, we aimed to identify the relationship of COPS3 gene expression to metastasis. Immunohistochemical staining for COPS3 was performed on 65 OGS samples (37 without and 28 with metastatic disease); 18.9% (7/37) of specimens from patients with no metastasis and 57.1% (16/28) of specimens from patients with metastasis showed intense staining of COPS3. Comparison of COPS3 expression between a poorly metastatic osteosarcoma cell line (SAOS-2) and highly metastatic osteosarcoma cell line (HOS) showed stronger expression of COPS3 in HOS cells. Inhibiting COPS3 function by siRNA resulted in reduced proliferation and migration of HOS cells. Inhibition of COPS3 gene downregulated expression of the MAPK signaling pathway, which has an important role in metastasis of OGS. Our results suggested that overexpression of the COPS3 gene might have important roles in metastasis of osteosarcoma cells

    From food to pest: Conversion factors determine switches between ecosystem services and disservices

    Get PDF
    Ecosystem research focuses on goods and services, thereby ascribing beneficial values to the ecosystems. Depending on the context, however, outputs from ecosystems can be both positive and negative. We examined how provisioning services of wild animals and plants can switch between being services and disservices. We studied agricultural communities in Laos to illustrate when and why these switches take place. Government restrictions on land use combined with economic and cultural changes have created perceptions of rodents and plants as problem species in some communities. In other communities that are maintaining shifting cultivation practices, the very same taxa were perceived as beneficial. We propose conversion factors that in a given context can determine where an individual taxon is located along a spectrum from ecosystem service to disservice, when, and for whom. We argue that the omission of disservices in ecosystem service accounts may lead governments to direct investments at inappropriate targets

    Targeting Angiogenesis-Dependent Calcified Neoplasms Using Combined Polymer Therapeutics

    Get PDF
    There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT), we conjugated the aminobisphosphonate alendronate (ALN), and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral.The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID) male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%.This is the first report to describe a new concept of a narrowly-dispersed combined polymer therapeutic designed to target both tumor and endothelial compartments of bone metastases and calcified neoplasms at a single administration. This new approach of co-delivery of two synergistic drugs may have clinical utility as a potential therapy for angiogenesis-dependent cancers such as osteosarcoma and bone metastases

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF

    Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms

    Get PDF
    The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation

    Cellular and molecular basis for endometriosis-associated infertility

    Full text link

    Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity

    No full text
    Interrelationships between ambient temperature, activity, and energy metabolism were explored in mice that had been selectively bred for high spontaneous wheel-running activity and their random-bred controls. Animals were exposed to three different ambient temperatures (10, 20 and 30°C) and wheel-running activity and metabolic rate were measured simultaneously. Wheel-running activity was decreased at low ambient temperatures in all animals and was increased in selected animals compared to controls at 20 and 30°C. Resting metabolic rate (RMR) and daily energy expenditure (DEE) decreased with increasing ambient temperature. RMR did not differ between control and selected mice, but mass-specific DEE was increased in selected mice. The cost of activity (measured as the slope of the relationship between metabolic rate and running speed) was similar at all ambient temperatures and in control and selected mice. Heat generated by running apparently did not substitute for heat necessary for thermoregulation. The overall estimate of running costs was 1.2 kJ/km for control mice and selected mice.
    corecore