27 research outputs found

    Assaying Total Carotenoids in Flours of Corn and Sweetpotato by Laser Photoacoustic Spectroscopy

    Get PDF
    This study describes the application of the laser photoacoustic spectroscopy (PAS) for quantification of total carotenoids (TC) in corn flours and sweetpotato flours. Overall, thirty-three different corn flours and nine sweetpotato flours were investigated. All PAS measurements were performed at room temperature using 488-nm argon laser radiation for excitation and mechanical modulation of 9 and 30 Hz. The measurements were repeated within a run and within several days or months. The UV–Vis spectrophotometry was used as the reference method. The concentration range that allows for the reliable analysis of TC spans a region from 1 to 40 mg kg−1 for corn flours and from 9 to 40 mg kg−1 for sweetpotato flours. In the case of sweetpotato flours, the quantification may extend even to 240 mg kg−1 TC. The estimated detection limit values for TC in corn and sweetpotato flours were 0.1 and 0.3 mg kg−1, respectively. The computed repeatability (n = 3–12) and intermediate precision (n = 6–28) RSD values at 9 and 30 Hz are comparable: 0.1–17.1% and 5.3–14.7% for corn flours as compared with 1.4–9.1% and 4.2–23.0% for sweetpotato flours. Our results show that PAS can be successfully used as a new analytical tool to simply and rapidly screen the flours for their nutritional potential based on the total carotenoid concentration

    Identification of simple sequence repeat markers for sweetpotato weevil resistance

    Get PDF
    The development of sweetpotato [Ipomoea batatas (L.) Lam] germplasm with resistance to sweetpotato weevil (SPW) requires an understanding of the biochemical and genetic mechanisms of resistance to optimize crop resistance. The African sweetpotato landrace, ‘New Kawogo’, was reported to be moderately resistant to two species of SPW, Cylas puncticollis and Cylas brunneus. Resistance has been associated with the presence of hydroxycinnamic acids esters (HCAs), but the underlying genetic basis remains unknown. To determine the genetic basis of this resistance, a bi-parental sweetpotato population from a cross between the moderately resistant, white-fleshed ‘New Kawogo’ and the highly susceptible, orange-fleshed North American variety ‘Beauregard’ was evaluated for SPW resistance and genotyped with simple sequence repeat (SSR) markers to identify weevil resistance loci. SPW resistance was measured on the basis of field storage root SPW damage severity and total HCA ester concentrations. Moderate broad sense heritability (H2 = 0.49) was observed for weevil resistance in the population. Mean genotype SPW severity scores ranged from 1.0 to 9.0 and 25 progeny exhibited transgressive segregation for SPW resistance. Mean genotype total HCA ester concentrations were significantly different (P < 0.0001). A weak but significant correlation (r = 0.103, P = 0.015) was observed between total HCA ester concentration and SPW severity. A total of five and seven SSR markers were associated with field SPW severity and total HCA ester concentration, respectively. Markers IBS11, IbE5 and IbJ544b showed significant association with both field and HCA-based resistance, representing potential markers for the development of SPW resistant sweetpotato cultivars
    corecore