39 research outputs found
Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS
Due to narrow therapeutic window of cancer therapeutic agents and the development of resistance against these agents, there is a need to discover novel agents to treat breast cancer. The antitumor activities of thymoquinone (TQ), a compound isolated from Nigella sativa oil, were investigated in breast carcinoma in vitro and in vivo. Cell responses after TQ treatment were assessed by using different assays including MTT assay, annexin V-propidium iodide staining, Mitosox staining and Western blot. The antitumor effect was studied by breast tumor xenograft mouse model, and the tumor tissues were examined by histology and immunohistochemistry. The level of antioxidant enzymes/molecules in mouse liver tissues was measured by commercial kits. Here, we show that TQ induced p38 phosphorylation and ROS production in breast cancer cells. These inductions were found to be responsible for TQ’s anti-proliferative and pro-apoptotic effects. Moreover, TQ-induced ROS production regulated p38 phosphorylation but not vice versa. TQ treatment was found to suppress the tumor growth and this effect was further enhanced by combination with doxorubicin. TQ also inhibited the protein expression of anti-apoptotic genes, such as XIAP, survivin, Bcl-xL and Bcl-2, in breast cancer cells and breast tumor xenograft. Reduced Ki67 and increased TUNEL staining were observed in TQ-treated tumors. TQ was also found to increase the level of catalase, superoxide dismutase and glutathione in mouse liver tissues. Overall, our results demonstrated that the antiproliferative and pro-apoptotic effects of TQ in breast cancer are mediated through p38 phosphorylation via ROS generation
Change of Positive Selection Pressure on HIV-1 Envelope Gene Inferred by Early and Recent Samples
HIV-1 infection has been on the rise in Japan recently, and the main transmission route has changed from blood transmission in the 1980s to homo- and/or hetero-sexual transmission in the 2000s. The lack of early viral samples with clinical information made it difficult to investigate the possible virological changes over time. In this study, we sequenced 142 full-length env genes collected from 16 Japanese subjects infected with HIV-1 in the 1980s and in the 2000s. We examined the diversity change in sequences and potential adaptive evolution of the virus to the host population. We used a codon-based likelihood method under the branch-site and clade models to detect positive selection operating on the virus. The clade model was extended to account for different positive selection pressures in different viral populations. The result showed that the selection pressure was weaker in the 2000s than in the 1980s, indicating that it might have become easier for the HIV to infect a new host and to develop into AIDS now than 20 years ago and that the HIV may be becoming more virulent in the Japanese population. The study provides useful information on the surveillance of HIV infection and highlights the utility of the extended clade models in analysis of virus populations which may be under different selection pressures
Viral Load Levels Measured at Set-Point Have Risen Over the Last Decade of the HIV Epidemic in the Netherlands
HIV-1 RNA plasma concentration at viral set-point is associated not only with disease outcome but also with the transmission dynamics of HIV-1. We investigated whether plasma HIV-1 RNA concentration and CD4 cell count at viral set-point have changed over time in the HIV epidemic in the Netherlands.We selected 906 therapy-naïve patients with at least one plasma HIV-1 RNA concentration measured 9 to 27 months after estimated seroconversion. Changes in HIV-1 RNA and CD4 cell count at viral set-point over time were analysed using linear regression models. The ATHENA national observational cohort contributed all patients who seroconverted in or after 1996; the Amsterdam Cohort Studies (ACS) contributed seroconverters before 1996. The mean of the first HIV-1 RNA concentration measured 9-27 months after seroconversion was 4.30 log(10) copies/ml (95% CI 4.17-4.42) for seroconverters from 1984 through 1995 (n = 163); 4.27 (4.16-4.37) for seroconverters 1996-2002 (n = 232), and 4.59 (4.52-4.66) for seroconverters 2003-2007 (n = 511). Compared to patients seroconverting between 2003-2007, the adjusted mean HIV-1 RNA concentration at set-point was 0.28 log(10) copies/ml (95% CI 0.16-0.40; p<0.0001) and 0.26 (0.11-0.41; p = 0.0006) lower for those seroconverting between 1996-2002 and 1984-1995, respectively. Results were robust regardless of type of HIV-1 RNA assay, HIV-1 subtype, and interval between measurement and seroconversion. CD4 cell count at viral set-point declined over calendar time at approximately 5 cells/mm(3)/year.The HIV-1 RNA plasma concentration at viral set-point has increased over the last decade of the HIV epidemic in the Netherlands. This is accompanied by a decreasing CD4 cell count over the period 1984-2007 and may have implications for both the course of the HIV infection and the epidemic
In vitro anti-HIV activity of some Indian medicinal plant extracts
Background
Human Immunodeficiency Virus (HIV) persists to be a significant public health issue worldwide. The current strategy for the treatment of HIV infection, Highly Active Antiretroviral Therapy (HAART), has reduced deaths from AIDS related disease, but it can be an expensive regime for the underdeveloped and developing countries where the supply of drugs is scarce and often not well tolerated, especially in persons undergoing long term treatment. The present therapy also has limitations of development of multidrug resistance, thus there is a need for the discovery of novel anti-HIV compounds from plants as a potential alternative in combating HIV disease.
Methods
Ten Indian medicinal plants were tested for entry and replication inhibition against laboratory adapted strains HIV-1IIIB, HIV-1Ada5 and primary isolates HIV-1UG070, HIV-1VB59 in TZM-bl cell lines and primary isolates HIV-1UG070, HIV-1VB59 in PM1 cell lines. The plant extracts were further evaluated for toxicity in HEC-1A epithelial cell lines by transwell epithelial model.
Results
The methanolic extracts of Achyranthes aspera, Rosa centifolia and aqueous extract of Ficus benghalensis inhibited laboratory adapted HIV-1 strains (IC80 3.6–118 μg/ml) and primary isolates (IC80 4.8–156 μg/ml) in TZM-bl cells. Methanolic extract of Strychnos potatorum, aqueous extract of Ficus infectoria and hydroalcoholic extract of Annona squamosa inhibited laboratory adapted HIV-1 strains (IC80 4.24–125 μg/ml) and primary isolates (IC80 18–156 μg/ml) in TZM-bl cells. Methanolic extracts of Achyranthes aspera and Rosa centifolia, (IC801-9 μg/ml) further significantly inhibited HIV-1 primary isolates in PM1cells. Methanolic extracts of Tridax procumbens, Mallotus philippinensis, Annona reticulate, aqueous extract of Ficus benghalensis and hydroalcoholic extract of Albizzia lebbeck did not exhibit anti-HIV activity in all the tested strains. Methanolic extract of Rosa centifolia also demonstrated to be non-toxic to HEC-1A epithelial cells and maintained epithelial integrity (at 500 μg/ml) when tested in transwell dual-chamber.
Conclusion
These active methanolic extracts of Achyranthes aspera and Rosa centifolia, could be further subjected to chemical analysis to investigate the active moiety responsible for the anti-HIV activity. Methanolic extract of Rosa centifolia was found to be well tolerated maintaining the epithelial integrity of HEC-1A cells in vitro and thus has potential for investigating it further as candidate microbicide