31 research outputs found

    Effects of Separate and Concomitant TLR-2 and TLR-4 Activation in Peripheral Blood Mononuclear Cells of Newborn and Adult Horses

    Get PDF
    Deficient innate and adaptive immune responses cause newborn mammals to be more susceptible to bacterial infections than adult individuals. Toll-like receptors (TLRs) are known to play a pivotal role in bacterial recognition and subsequent immune responses. Several studies have indicated that activation of certain TLRs, in particular TLR-2, can result in suppression of inflammatory pathology. In this study, we isolated peripheral blood mononuclear cells (PBMCs) from adult and newborn horses to investigate the influence of TLR-2 activation on the inflammatory response mediated by TLR-4. Data were analysed in a Bayesian hierarchical linear regression model, accounting for variation between horses. In general, cytokine responses were lower in PBMCs derived from foals compared with PBMCs from adult horses. Whereas in foal PBMCs expression of TLR-2, TLR-4, and TLR-9 was not influenced by separate and concomitant TLR-2 and TLR-4 activation, in adult horse PBMCs, both TLR ligands caused significant up-regulation of TLR-2 and down-regulation of TLR-9. Moreover, in adult horse PBMCs, interleukin-10 protein production and mRNA expression increased significantly following concomitant TLR-2 and TLR-4 activation (compared with sole TLR-4 activation). In foal PBMCs, this effect was not observed. In both adult and foal PBMCs, the lipopolysaccharide-induced pro-inflammatory response was not influenced by pre-incubation and co-stimulation with the specific TLR-2 ligand Pam3-Cys-Ser-Lys4. This indicates that the published data on other species cannot be translated directly to the horse, and stresses the necessity to confirm results obtained in other species in target animals. Future research should aim to identify other methods or substances that enhance TLR functionality and bacterial defence in foals, thereby lowering susceptibility to life-threatening infections during the first period of life

    Global Activation of CD8+ Cytotoxic T Lymphocytes Correlates with an Impairment in Regulatory T Cells in Patients with Generalized Vitiligo

    Get PDF
    Melanocyte-specific CD8+ cytotoxic T lymphocytes (CTLs) play a pivotal role in vitiligo-induced depigmentation. Yet, the mechanisms underlying the high frequency of generalized autoimmune disorders associated with generalized vitiligo (GV) are unknown. We hypothesized that an imbalance between activated CD8+ CTLs and regulatory T cells (Tregs) exists in patients with GV . Assessment of the circulating CD8+ CTLs and Tregs by flow cytometric analysis revealed an obvious expansion of CD8+ CTLs and a concomitant decrease in Treg cells in GV patients. The percentages of skin infiltrating CD8+ CTLs and Tregs were evaluated by immunohistochemistry and revealed dramatically increased numbers of both CD8+ CTLs and Tregs in the perilesional skin of GV patients. However, peripheral Tregs were impaired in their ability to suppress the proliferation and cytolytic capacity of autologous CD8+ T cells, suggesting that a functional failure of Tregs and the hyper-activation of CD8+ CTLs may contribute to progressive GV. Our data indicate that reduced numbers and impaired function of natural Tregs fail to control the widespread activation of CD8+ CTLs, which leads to the destruction of melanocytes and contributes to the elevated frequency of various associated autoimmune diseases. This knowledge furthers our understanding of the mechanisms of immune tolerance that are impaired in GV patients and may aid in the future development of effective immunotherapy for GV patients

    IgA in the horse: cloning of equine polymeric Ig receptor and J chain and characterization of recombinant forms of equine IgA

    Get PDF
    As in other mammals, immunoglobulin A (IgA) in the horse has a key role in immune defense. To better dissect equine IgA function, we isolated complementary DNA (cDNA) clones for equine J chain and polymeric Ig receptor (pIgR). When coexpressed with equine IgA, equine J chain promoted efficient IgA polymerization. A truncated version of equine pIgR, equivalent to secretory component, bound with nanomolar affinity to recombinant equine and human dimeric IgA but not with monomeric IgA from either species. Searches of the equine genome localized equine J chain and pIgR to chromosomes 3 and 5, respectively, with J chain and pIgR coding sequence distributed across 4 and 11 exons, respectively. Comparisons of transcriptional regulatory sequences suggest that horse and human pIgR expression is controlled through common regulatory mechanisms that are less conserved in rodents. These studies pave the way for full dissection of equine IgA function and open up possibilities for immune-based treatment of equine diseases

    Non-small-cell lung cancer in a French department, (1982–1997): management and outcome

    Get PDF
    Addition of chemotherapy to the treatment of non-small-cell lung cancer (NSCLC) resulted in a modest but clear improvement in the survival of selected patients. To ascertain if this translates to improved survival in the whole population of patients, we conducted a retrospective population-based study of a sample of 1738 patients diagnosed with primary NSCLC in a French department between 1982 and 1997. The proportion of women, metastatic cases and adenocarcinoma changed significantly over time, as did their management: use of chemotherapy alone increased from 9.7 to 28.1% (P<0.0001), while the use of radiotherapy alone decreased from 32.2 to 9.4% (P<0.0001). The 5-year survival probability was 15.7 % for all patients and 32.6% for those with resectable disease. The 1- and 2-year survival probabilities were 38.2 and 15.6% in locally advanced disease, and were, respectively, 16.8 and 5.2% in metastatic disease. Disease extent and histological subtype were significant independent prognostic factors. Survival of resectable disease was longer among patients treated with surgery or surgery plus chemotherapy, while better outcomes for locally advanced disease were associated with radiation plus chemotherapy. In metastastic disease, patients treated by classical agent without platin or palliative care only had the shortest survival. Despite changes in treatment in accordance with the state-of-the-art, overall survival did not improve over time. It is not unlikely that more patients with bad PS were diagnosed during the latter end of the study period. This could at least partially explain the absence of detection of an overall improvement in survival

    Intramuscular Administration of a Synthetic CpG-Oligodeoxynucleotide Modulates Functional Responses of Neutrophils of Neonatal Foals

    Get PDF
    Neutrophils play an important role in protecting against infection. Foals have age-dependent deficiencies in neutrophil function that may contribute to their predisposition to infection. Thus, we investigated the ability of a CpG-ODN formulated with Emulsigen to modulate functional responses of neutrophils in neonatal foals. Eighteen foals were randomly assigned to receive either a CpG-ODN with Emulsigen (N = 9) or saline intramuscularly at ages 1 and 7 days. At ages 1, 3, 9, 14, and 28, blood was collected and neutrophils were isolated from each foal. Neutrophils were assessed for basal and Rhodococcus equi-stimulated mRNA expression of the cytokines interferon-γ (IFN-γ), interleukin (IL)-4, IL-6, and IL-8 using real-time PCR, degranulation by quantifying the amount of β-D glucuronidase activity, and reactive oxygen species (ROS) generation using flow cytometry. In vivo administration of the CpG-ODN formulation on days 1 and 7 resulted in significantly (P<0.05) increased IFN-γ mRNA expression by foal neutrophils on days 3, 9, and 14. Degranulation was significantly (P<0.05) lower for foals in the CpG-ODN-treated group than the control group at days 3 and 14, but not at other days. No effect of treatment on ROS generation was detected. These results indicate that CpG-ODN administration to foals might improve innate and adaptive immune responses that could protect foals against infectious diseases and possibly improve responses to vaccination.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund

    Virus replicon particle vaccines expressing nucleoprotein of influenza A virus mediate enhanced inflammatory responses in pigs.

    Get PDF
    Studies in the mouse model indicate that the nucleoprotein of influenza A virus represents an interesting vaccine antigen being well conserved across subtypes of influenza virus but still able to induce protective immune responses. Here we show that immunizations of pigs with vesicular stomatitis virus- and classical swine fever virus-derived replicon (VRP) particles expressing the nucleoprotein (NP) of H1N1 A/swine/Belzig/2/01 induced potent antibody and T-cell responses against influenza A virus. In contrast to a conventional whole inactivated virus vaccine, the VRP vaccines induced both NP-specific CD4 and CD8 T cells responses, including interferon-γ and tumor-necrosis-factor dual-secreting cell. Although T-cells and antibody responses were cross-reactive with the heterologous H1N2 A/swine/Bakum/R757/2010 challenge virus, they did not provide protection against infection. Surprisingly, vaccinated pigs showed enhanced virus shedding, lung inflammation and increased levels of systemic and lung interferon-α as well as elevated lung interleukin-6. In conclusion, our study shows that NP, although efficacious in the mouse model, appears not to be a promising stand-alone vaccine antigen for pigs
    corecore