87 research outputs found

    Mitochondrial Control Region and microsatellite analyses on harbour porpoise (Phocoena phocoena) unravel population differentiation in the Baltic Sea and adjacent waters

    Get PDF
    The population status of the harbour porpoise (Phocoena phocoena) in the Baltic area has been a continuous matter of debate. Here we present the by far most comprehensive genetic population structure assessment to date for this region, both with regard to geographic coverage and sample size: 497 porpoise samples from North Sea, Skagerrak, Kattegat, Belt Sea, and Inner Baltic Sea were sequenced at the mitochondrial Control Region and 305 of these specimens were typed at 15 polymorphic microsatellite loci. Samples were stratified according to sample type (stranding vs. by-caught), sex, and season (breeding vs. non-breeding season). Our data provide ample evidence for a population split between the Skagerrak and the Belt Sea, with a transition zone in the Kattegat area. Among other measures, this was particularly visible in significant frequency shifts of the most abundant mitochondrial haplotypes. A particular haplotype almost absent in the North Sea was the most abundant in Belt Sea and Inner Baltic Sea. Microsatellites yielded a similar pattern (i.e., turnover in occurrence of clusters identified by STRUCTURE). Moreover, a highly significant association between microsatellite assignment and unlinked mitochondrial haplotypes further indicates a split between North Sea and Baltic porpoises. For the Inner Baltic Sea, we consistently recovered a small, but significant separation from the Belt Sea population. Despite recent arguments that separation should exceed a predefined threshold before populations shall be managed separately, we argue in favour of precautionary acknowledging the Inner Baltic porpoises as a separate management unit, which should receive particular attention, as it is threatened by various factors, in particular local fishery measures. © Springer Science+Business Media B.V. 2009

    Considerations for analysis of endothelial shear stress and strain in FSI models of atherosclerosis

    No full text
    Atherosclerosis is a lipid driven chronic inflammatory disease that is characterized by the formation of plaques at predilection sites. These predilection sites (side branches, curved segments, and bifurcations) have often been associated with disturbed shear stress profiles. However, in addition to shear stress, endothelial cells also experience artery wall strain that could contribute to atherosclerosis progression. Herein, we describe a method to accurately obtain these shear stress and strain profiles. We developed a fluid-structure interaction (FSI) framework for modelling arteries within a commercially available package (Abaqus, version 6.12) that included known prestresses (circumferential, axial and pressure associated). In addition, we co-registered 3D histology to a micro-CT-derived 3D reconstruction of an atherosclerotic carotid artery from a cholesterol-fed ApoE-/-mouse to include the spatial distribution of lipids within a subject-specific model. The FSI model also incorporated a nonlinear hyperelastic material model with regionally varying properties that distinguished between healthy vessel wall and plaque. FSI predicted a lower shear stress than CFD (--12%), but further decreases in plaque regions with softer properties (--24%) were dependent on the approach used to implement the prestresses in the artery wall. When implemented with our new hybrid approach (zero prestresses in regions of lipid deposition), there was significant heterogeneity in endothelial shear stress in the atherosclerotic artery due to variations in stiffness and, in turn, wall strain. In conclusion, when obtaining endothelial shear stress and strain in diseased arteries, a careful consideration of prestresses is necessary. This paper offers a way to implement them

    Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach

    Get PDF
    Anthropogenic modification of the countryside has resulted in much of the landscape consisting of fragments of once continuous habitat. Increasing habitat connectivity at the landscape-scale has a vital role to play in the conservation of species restricted to such remnant patches, especially as species may attempt to track zones of habitat that satisfy their niche requirements as the climate changes. Conservation policies and management strategies frequently advocate corridor creation as one approach to restore connectivity and to facilitate species movements through the landscape. Here we examine the utility of hedgerows as corridors between woodland habitat patches using rigorous systematic review methodology. Systematic searching yielded 26 studies which satisfied the review inclusion criteria. The empirical evidence currently available is insufficient to evaluate the effectiveness of hedgerow corridors as a conservation tool to promote the population viability of woodland fauna. However, the studies did provide anecdotal evidence of positive local population effects and indicated that some species use hedgerows as movement conduits. More replicated and controlled field investigations or long term monitoring are required in order to allow practitioners and policy makers to make better informed decisions about hedgerow corridor creation and preservation. The benefits of such corridors in regard to increasing habitat connectivity remain equivocal, and the role of corridors in mitigating the effects of climate change at the landscape-scale is even less well understood
    corecore