67 research outputs found

    2019 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations : summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces

    No full text
    The International Liaison Committee on Resuscitation has initiated a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation science. This is the third annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. It addresses the most recent published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. This summary addresses the role of cardiac arrest centers and dispatcher-assisted cardiopulmonary resuscitation, the role of extracorporeal cardiopulmonary resuscitation in adults and children, vasopressors in adults, advanced airway interventions in adults and children, targeted temperature management in children after cardiac arrest, initial oxygen concentration during resuscitation of newborns, and interventions for presyncope by first aid providers. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the certainty of the evidence on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence to Decision Framework Highlights sections. The task forces also listed priority knowledge gaps for further research

    Ammonium Transport in Myeloma and Hybridoma Cells

    No full text

    Control of HCO\u3csub\u3e3\u3c/sub\u3e-Dependent Exchangers by Cyclic Nucleotides in Vascular Smooth Muscle Cells

    No full text
    A variety of membrane transport systems responsible for the regulation of intracellular pH (pHi) have been identified in smooth muscle (Aickin, 1986; Aalkjaer and Cragoe, 1988; Wray, 1988; Kikeri et al., 1990) and smooth muscle-like cells (Boyarsky et al.,1988a,b; Putnam,1990). These include the ubiquitous Na/H exchanger and at least two HC03-dependent transport systems (Fig. 1): i) a putative alkalinizing (Na + HCO3)/C1 exchanger (although the role of Cl in this exchanger is still at issue) (Aickin and Brading, 1984; Aalkjaer and Mulvany, 1988); and ii) an acidifying Cl/HCO3 exchanger. While these exchangers are important for determining steady state pHi (Aalkjaer and Cragoe, 1988; Boyarsky et al., 1988a; Wray, 1988; Kikeri et al., 1990; Putnam and Grubbs, 1990), defending pHiagainst acid/base disturbances (Aalkjaer and Cragoe, 1988; Boyarsky et al., 1988b; Putnam, 1990) and mediating cellular responses to external signals (Berk et al., 1987; Ganz et al., 1989), only the Na/H exchanger has been extensively studied in regard to the factors which regulate its activity. In fact, the regulation of the HCO3-dependent transport systems is poorly studied in any cell
    • …
    corecore