16 research outputs found

    hTERT promoter activity and CpG methylation in HPV-induced carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of telomerase resulting from deregulated hTERT expression is a key event during high-risk human papillomavirus (hrHPV)-induced cervical carcinogenesis. In the present study we examined hTERT promoter activity and its relation to DNA methylation as one of the potential mechanisms underlying deregulated hTERT transcription in hrHPV-transformed cells.</p> <p>Methods</p> <p>Using luciferase reporter assays we analyzed hTERT promoter activity in primary keratinocytes, HPV16- and HPV18-immortalized keratinocyte cell lines and cervical cancer cell lines. In the same cells as well as cervical specimens we determined hTERT methylation by bisulfite sequencing analysis of the region spanning -442 to +566 (relative to the ATG) and quantitative methylation specific PCR (qMSP) analysis of two regions flanking the hTERT core promoter.</p> <p>Results</p> <p>We found that in most telomerase positive cells increased hTERT core promoter activity coincided with increased hTERT mRNA expression. On the other hand basal hTERT promoter activity was also detected in telomerase negative cells with no or strongly reduced hTERT mRNA expression levels. In both telomerase positive and negative cells regulatory sequences flanking both ends of the core promoter markedly repressed exogenous promoter activity.</p> <p>By extensive bisulfite sequencing a strong increase in CpG methylation was detected in hTERT positive cells compared to cells with no or strongly reduced hTERT expression. Subsequent qMSP analysis of a larger set of cervical tissue specimens revealed methylation of both regions analyzed in 100% of cervical carcinomas and 38% of the high-grade precursor lesions, compared to 9% of low grade precursor lesions and 5% of normal controls.</p> <p>Conclusions</p> <p>Methylation of transcriptionally repressive sequences in the hTERT promoter and proximal exonic sequences is correlated to deregulated hTERT transcription in HPV-immortalized cells and cervical cancer cells. The detection of DNA methylation at these repressive regions may provide an attractive biomarker for early detection of cervical cancer.</p

    Discovery of DNA methylation markers in cervical cancer using relaxation ranking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To discover cancer specific DNA methylation markers, large-scale screening methods are widely used. The pharmacological unmasking expression microarray approach is an elegant method to enrich for genes that are silenced and re-expressed during functional reversal of DNA methylation upon treatment with demethylation agents. However, such experiments are performed in <it>in vitro </it>(cancer) cell lines, mostly with poor relevance when extrapolating to primary cancers. To overcome this problem, we incorporated data from primary cancer samples in the experimental design. A strategy to combine and rank data from these different data sources is essential to minimize the experimental work in the validation steps.</p> <p>Aim</p> <p>To apply a new relaxation ranking algorithm to enrich DNA methylation markers in cervical cancer.</p> <p>Results</p> <p>The application of a new sorting methodology allowed us to sort high-throughput microarray data from both cervical cancer cell lines and primary cervical cancer samples. The performance of the sorting was analyzed <it>in silico</it>. Pathway and gene ontology analysis was performed on the top-selection and gives a strong indication that the ranking methodology is able to enrich towards genes that might be methylated. Terms like regulation of progression through cell cycle, positive regulation of programmed cell death as well as organ development and embryonic development are overrepresented. Combined with the highly enriched number of imprinted and X-chromosome located genes, and increased prevalence of known methylation markers selected from cervical (the highest-ranking known gene is <it>CCNA1</it>) as well as from other cancer types, the use of the ranking algorithm seems to be powerful in enriching towards methylated genes.</p> <p>Verification of the DNA methylation state of the 10 highest-ranking genes revealed that 7/9 (78%) gene promoters showed DNA methylation in cervical carcinomas. Of these 7 genes, 3 (<it>SST</it>, <it>HTRA3 </it>and <it>NPTX1</it>) are not methylated in normal cervix tissue.</p> <p>Conclusion</p> <p>The application of this new relaxation ranking methodology allowed us to significantly enrich towards methylation genes in cancer. This enrichment is both shown <it>in silico </it>and by experimental validation, and revealed novel methylation markers as proof-of-concept that might be useful in early cancer detection in cervical scrapings.</p

    Ventricular assist device with built-in trileaflet polyurethane valves

    No full text

    The Reproductive Ecology of Industrial Societies, Part I : Why Measuring Fertility Matters.

    Get PDF
    Is fertility relevant to evolutionary analyses conducted in modern industrial societies? This question has been the subject of a highly contentious debate, beginning in the late 1980s and continuing to this day. Researchers in both evolutionary and social sciences have argued that the measurement of fitness-related traits (e.g., fertility) offers little insight into evolutionary processes, on the grounds that modern industrial environments differ so greatly from those of our ancestral past that our behavior can no longer be expected to be adaptive. In contrast, we argue that fertility measurements in industrial society are essential for a complete evolutionary analysis: in particular, such data can provide evidence for any putative adaptive mismatch between ancestral environments and those of the present day, and they can provide insight into the selection pressures currently operating on contemporary populations. Having made this positive case, we then go on to discuss some challenges of fertility-related analyses among industrialized populations, particularly those that involve large-scale databases. These include "researcher degrees of freedom" (i.e., the choices made about which variables to analyze and how) and the different biases that may exist in such data. Despite these concerns, large datasets from multiple populations represent an excellent opportunity to test evolutionary hypotheses in great detail, enriching the evolutionary understanding of human behavior
    corecore